• 제목/요약/키워드: Thermal Voltage Converter

검색결과 74건 처리시간 0.037초

Proposal of Potted Inductor with Enhanced Thermal Transfer for High Power Boost Converter in HEVs

  • You, Bong-Gi;Ko, Jeong-Min;Kim, Jun-Hyung;Lee, Byoung-Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.1075-1080
    • /
    • 2015
  • A hybrid electric vehicle (HEV) powertrain has more than one energy source including a high-voltage electric battery. However, for a high voltage electric battery, the average current is relatively low for a given power level. Introduced to increase the voltage of a HEV battery, a compact, high-efficiency boost converter, sometimes called a step-up converter, is a dc-dc converter with an output voltage greater than its input voltage. The inductor occupies more than 30% of the total converter volume making it difficult to get high power density. The inductor should have the characteristics of good thermal stability, low weight, low losses and low EMI. In this paper, Mega Flux® was selected as the core material among potential core candidates. Different structured inductors with Mega Flux® were fabricated to compare the performance between the conventional air cooled and proposed potting structure. The proposed inductor has reduced the weight by 75% from 8.8kg to 2.18kg and the power density was increased from 15.6W/cc to 56.4W/cc compared with conventional inductor. To optimize the performance of proposed inductor, the potting materials with various thermal conductivities were investigated. Silicone with alumina was chosen as potting materials due to the high thermo-stable properties. The proposed inductors used potting material with thermal conductivities of 0.7W/m·K, 1.0W/m·K and 1.6W/m·K to analyze the thermal performance. Simulations of the proposed inductor were fulfilled in terms of magnetic flux saturation, leakage flux and temperature rise. The temperature rise and power efficiency were measured with the 40kW boost converter. Experimental results show that the proposed inductor reached the temperature saturation of 107℃ in 20 minutes. On the other hand, the temperature of conventional inductor rose by 138℃ without saturation. And the effect of thermal conductivity was verified as the highest thermal conductivity of potting materials leads to the lowest temperature saturations.

SiC Based Single Chip Programmable AC to DC Power Converter

  • Pratap, Rajendra;Agarwal, Vineeta;Ravindra, Kumar Singh
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제14권6호
    • /
    • pp.697-705
    • /
    • 2014
  • A single chip Programmable AC to DC Power Converter, consisting of wide band gap SiC MOSFET and SiC diodes, has been proposed which converts high frequency ac voltage to a conditioned dc output voltage at user defined given power level. The converter has high conversion efficiency because of negligible reverse recovery current in SiC diode and SiC MOSFET. High frequency operation reduces the need of bigger size inductor. Lead inductors are enough to maintain current continuity. A complete electrical analysis, die area estimation and thermal analysis of the converter has been presented. It has been found that settling time and peak overshoot voltage across the device has reduced significantly when SiC devices are used with respect to Si devices. Reduction in peak overshoot also increases the converter efficiency. The total package substrate dimension of the converter circuit is only $5mm{\times}5mm$. Thermal analysis performed in the paper shows that these devices would be very useful for use as miniaturized power converters for load currents of up to 5-7 amp, keeping the package thermal conductivity limitation in mind. The converter is ideal for voltage requirements for sub-5 V level power supplies for high temperatures and space electronics systems.

0.18um CMOS 공정을 이용한 강압형 DC-DC 컨버터 보호회로 구현 및 측정 (Implementation and Measurement of Protection Circuits for Step-down DC-DC Converter Using 0.18um CMOS Process)

  • 송원주;송한정
    • 한국산업융합학회 논문집
    • /
    • 제21권6호
    • /
    • pp.265-271
    • /
    • 2018
  • DC-DC buck converter is a critical building block in the power management integrated circuit (PMIC) architecture for the portable devices such as cellular phone, personal digital assistance (PDA) because of its power efficiency over a wide range of conversion ratio. To ensure a safe operation, avoid unexpected damages and enhance the reliability of the converter, fully-integrated protection circuits such as over voltage protection (OVP), under voltage lock out (UVLO), startup, and thermal shutdown (TSD) blocks are designed. In this paper, these three fully-integrated protection circuit blocks are proposed for use in the DC-DC buck converter. The buck converter with proposed protection blocks is operated with a switching frequency of 1 MHz in continuous conduction mode (CCM). In order to verify the proposed scheme, the buck converter has been designed using a 180 nm CMOS technology. The UVLO circuit is designed to track the input voltage and turns on/off the buck converter when the input voltage is higher/lower than 2.6 V, respectively. The OVP circuit blocks the buck converter's operation when the input voltage is over 3.3 V, thereby preventing the destruction of the devices inside the controller IC. The TSD circuit shuts down the converter's operation when the temperature is over $85^{\circ}C$. In order to verify the proposed scheme, these protection circuits were firstly verified through the simulation in SPICE. The proposed protection circuits were then fabricated and the measured results showed a good matching with the simulation results.

Comparison of Efficiency for Voltage Source and Current Source Based Converter in 5MW PMSG Wind Turbine Systems

  • Kang, Tahyun;Suh, Yongsug
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2015년도 전력전자학술대회 논문집
    • /
    • pp.357-358
    • /
    • 2015
  • This paper provides a comparison of power converter loss and thermal description for voltage source and current source type 5MW-class medium voltage topologies of wind turbines. Neutral-point clamped three-level converter is adopted for voltage source type topology while two-level converter is employed for current source type topology considering the popularity in the industry. In order to match the required voltage level of 4160V with the same switching device of IGCT as in voltage source converter, two active switches are connected in series for the case of current source converter. The loss analysis is confirmed through PLECS simulations. In addition, the loss factors due to di/dt and dv/dt snubber and ac input filter are presented. The comparison result shows that VSC-based wind turbine system has a higher efficiency than that of CSC under the rated operating conditions.

  • PDF

Evanohm R 합금 히터를 사용한 크로멜-콘스탄탄 다중접합 열전변환기의 제작 및 특성 (Fabrication and Characteristics of Chromel-Constantan Multijunction Thermal Converter with Evanohm R Alloy Heater)

  • 이영화;권성원;김국진;박세일;임영언
    • 센서학회지
    • /
    • 제13권1호
    • /
    • pp.35-40
    • /
    • 2004
  • A thin-film multijunction thermal converter was fabricated through the process using 6 inch silicon wafer semiconductor process and bulk micromachining. Evanohm R alloy and chromel-constantan were used as a heater and thermocouple materials, respectively. The temperature coefficient of resistance of Evanohm R heater was about 75.12 ppm/$^{\circ}C$ and the voltage sensitivity of the thermal converter indicated about 5.75 mV/mW in air. The transfer differences, measured by FRDC-DC method in the frequency range from 20 Hz to 10 kHz, showed the value under about 1.36 ppm, 0.83 ppm for the film thickness of 500, 200 nm, respectively. And in case of a 200 nm-thick thermal converter, the AC-DC transfer differences seems to be stabilized below the value of 1 ppm in the frequency range from 1 kHz to 500 kHz.

전압형 및 전류형 컨버터를 적용한 5MW PMSG 풍력발전시스템의 효율 비교 (Comparison of Efficiency for Voltage Source and Current Source Based Converters in 5MW PMSG Wind Turbine Systems)

  • 강다현;강태원;채범석;이기현;서용석
    • 전력전자학회논문지
    • /
    • 제20권5호
    • /
    • pp.410-420
    • /
    • 2015
  • This paper provides a comparison of power converter loss and thermal description for voltage source and current source type 5 MW-class medium-voltage topologies of wind turbines. Neutral-point clamped three-level converter is adopted for a voltage source type topology, whereas a two-level converter is employed for current source type topology, considering the popularity in the industry. To match the required voltage level of 4160 V with the same switching device of IGCT as in the voltage source converter, two active switches are connected in series for the case of current source converter. Transient thermal modeling of a four-layer Foster network for heat transfer is done to better estimate the transient junction and case temperature of power semiconductors during various operating conditions in wind turbines. The loss analysis is confirmed through PLECS simulations. Comparison result shows that the VSC-based wind turbine system has higher efficiency than the CSC under the rated operating conditions.

Optimal Design of High Frequency Transformer for 150W Class Module-Integrated Converter

  • Yoo, Jin-Hyung;Jung, Tae-Uk
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권1호
    • /
    • pp.288-294
    • /
    • 2015
  • Recently, the module-integrated converter has shown an interest in the photovoltaic generation system. In this system, the high frequency transformer should be compact and efficient. The proposed method is based on the correlation characteristic between the copper and core loss to minimize the loss of transformer. By sizing an effective cross-sectional area and window area of core, the amount of loss is minimized. This paper presents the design and analysis of high frequency transformer by using the 3D finite element model coupled with DC-DC converter circuit for more accurate analysis by considering the nonlinear voltage and current waveforms in converter circuit. The current waveform in each winding is realized by using the ideal DC voltage source and switching component. And, the thermal analysis is performed to satisfy the electrical and thermal design criteria.

컨버터 내장형 LED 가로등 및 보안등의 전기적 특성 분석 (Electrical Characteristics Analysis of LED Lamps using Internal Converter for Road and Street Lighting)

  • 김향곤;길형준;최효상
    • 전기학회논문지P
    • /
    • 제59권2호
    • /
    • pp.238-244
    • /
    • 2010
  • In this paper, we studied electrical characteristics of internal converter type of LED lamps for road and street lighting. We surveyed electro-technical regulations and KS(Korean industrial standards) about LED luminairs. Waveforms of voltage and current, thermal distributions, insulation resistances between live parts and exposed conductive parts, and flame test of cover of LED lamps were experimented and analyzed. In regulations, insulation resistance between live conductors and exposed conductive parts should be greater than $0.2M{\Omega}$ in case nominal voltage of wiring is 220V. In KS codes, the value of insulation resistance should be greater than $2M{\Omega}$ while applying DC 500V or DC 100V. In the result of this study, waveforms of primary voltage and current were distorted. There was difference in waveforms of secondary voltage and current according to composition of converter. Mostly, insulation resistances were measured high more than regulation and code value but some measured points were measured badly($0.0M{\Omega}$). Cover of LED lamps was ignited easily. We expect that the results of this study would be helpful for revision of regulations and national codes for the electrical safety of LED road and street lighting.

Review on Gallium Nitride HEMT Device Technology for High Frequency Converter Applications

  • Yahaya, Nor Zaihar;Raethar, Mumtaj Begam Kassim;Awan, Mohammad
    • Journal of Power Electronics
    • /
    • 제9권1호
    • /
    • pp.36-42
    • /
    • 2009
  • This paper presents a review of an improved high power-high frequency III-V wide bandgap (WBG) semiconductor device, Gallium Nitride (GaN). The device offers better efficiency and thermal management with higher switching frequency. By having higher blocking voltage, GaN can be used for high voltage applications. In addition, the weight and size of passive components on the printed circuit board can be reduced substantially when operating at high frequency. With proper management of thermal and gate drive design, the GaN power converter is expected to generate higher power density with lower stress compared to its counterparts, Silicon (Si) devices. The main contribution of this work is to provide additional information to young researchers in exploring new approaches based on the device's capability and characteristics in applications using the GaN power converter design.

저주파수 및 저입력전압용 박막형 다중접합 열전변환기 (Thin Film Multijunction Thermal Converter for Low Input Voltage with Low Frequency)

  • 황찬순;이형주;김진섭;이정희;박세일;권성원
    • 센서학회지
    • /
    • 제11권3호
    • /
    • pp.145-154
    • /
    • 2002
  • 저주파수의 저전압용 크로멜-알루멜 다중접합 열전변환기를 개발하고자 NiCr 히터의 두께를 400 nm. 600 nm 및 800 nm로 변화시켰다. $40\;Hz{\sim}10\;kHz$의 직류 역방향 주파수 범위로 0.5 V의 교류 실효전압을 열전변환기에 인가시켰을 때 히터의 두께가 400 nm인 열전변환기가 ${\pm}0.51{\sim}{\pm}1.69\;ppm$ 범위의 열전효과에 의한 교류-직류 전압 변환오차를 나타내었고. 열전효과 및 주파수에 의한 교류-직류 변환오차는 $40\;Hz{\sim}1\;MHz$의 주파수 범위에서 ${\pm}40{\sim}115\;ppm$ 범위를 나타내어, 저주파수의 저전압용으로 사용할 수 있었다.