• Title/Summary/Keyword: Thermal Treatment

Search Result 2,711, Processing Time 0.096 seconds

Modification of isotropic coal-tar pitch by acid treatments for carbon fiber melt-spinning

  • Yoo, Mi Jung;Ko, Hyo Jun;Lim, Yun-Soo;Kim, Myung-Soo
    • Carbon letters
    • /
    • v.15 no.4
    • /
    • pp.247-254
    • /
    • 2014
  • In this work, thermal treatment accompanied with different acid treatments was applied to a commercial coal tar pitch (CTP) to obtain a spinnable precursor pitch for carbon fiber. In the case of thermal treatment only, a relatively high reaction temperature of between $380^{\circ}C$ and $400^{\circ}C$ was required to obtain a softening point (SP) range of $220^{\circ}C-260^{\circ}C$ and many meso-phase particles were created during the application of high reaction temperature. When nitric acid or sulfuric acid treatment was conducted before the thermal treatment, the precursor pitch with a proper SP range could be obtained at reaction temperatures of $280^{\circ}C-300^{\circ}C$, which were about $100^{\circ}C$ lower than those for the case of thermal treatment only. With the acid treatments, the yield and SP of the precursor pitch increased dramatically and the formation of meso-phase was suppressed due to the lower reaction temperatures. Since the precursor pitches with acid and thermal treatment were not spinnable due to the inhomogeneity of properties such as molecular weight distribution and viscosity, the CTP was mixed with ethanol before the consecutive nitric acid and thermal treatments. The precursor pitches with ethanol, nitric acid, and thermal treatments were easily spinnable, and their spinning and carbon fiber properties were compared to those of air blowing and thermal treated CTP.

Comparison of Thermal Ablation and Surgery for Low-Risk Papillary Thyroid Microcarcinoma: A Systematic Review and Meta-Analysis

  • Hyun Jin Kim;Se Jin Cho;Jung Hwan Baek
    • Korean Journal of Radiology
    • /
    • v.22 no.10
    • /
    • pp.1730-1741
    • /
    • 2021
  • Objective: Although thermal ablation is effective in treating low-risk papillary thyroid microcarcinomas (PTMCs), comparison of treatment outcomes between thermal ablation and surgery has not yet been systematically evaluated. This study aimed to compare the efficacy and safety of thermal ablation and surgery for the treatment of low-risk PTMCs. Materials and Methods: Ovid-MEDLINE and EMBASE databases were searched for studies reporting comparisons of treatment results between thermal ablation and surgery for patients with low-risk PTMC published up to April 6, 2020. The analysis evaluated the efficacy (local tumor recurrence, occurrence of new tumor, metastasis, and rescue surgery) and safety (complication rate) of thermal ablation and surgery. Results: This systematic review included four studies with a total of 339 PTMCs in 339 patients who underwent thermal ablation and 320 PTMCs in 314 patients who underwent surgery. There was no local tumor recurrence or distant metastasis in either group. There was no significant difference in the pooled proportion of lymph node metastasis (2.6% with thermal ablation vs. 3.3% with surgery, p = 0.65), occurrence of new tumors (1.4% with thermal ablation vs. 1.3% with surgery, p = 0.85), or rescue surgery (2.6% with thermal ablation vs. 1.6% with surgery, p = 0.62). However, the pooled complication rate was significantly higher in the surgery group than in the ablation group (3.3% with thermal ablation vs. 7.8% with surgery, p = 0.03). Conclusion: Both thermal ablation and surgery are effective and safe options for the management of low-risk PTMCs, with thermal ablation achieving a lower complication rate. Therefore, thermal ablation may be considered as an alternative treatment option for low-risk PTMC in patients who refuse surgery and active surveillance or are ineligible for surgery.

Effect of Precipitation and Dissolution of Si on the Thermal Diffusivity in the Al-Si Alloy System (열처리를 통한 Si 고용 및 석출 반응이 Al-Si 합금의 열확산도에 미치는 영향)

  • Kim, Yumi;Kim, Youngchan;Choi, Seweon
    • Korean Journal of Materials Research
    • /
    • v.30 no.9
    • /
    • pp.474-479
    • /
    • 2020
  • The effect of precipitation and dissolution of Si on the thermal diffusivity in the Al-Si alloy system is reported in this study and solution heat treatment followed by aging treatment is carried out to determine the effects of heat treatment on the thermal characteristics. The solution treatment is performed at 535 ℃ for 4 and 10 h and then the specimens are cooled by rapid quenching. The samples are aged at 300 ℃ for 4 h to precipitate Si solute. The addition of 9 wt% silicon contents makes the thermal diffusivity decrease from 78 to 74 mm/s2 in the cases of solid solution treated and quenched samples. After quenching and aging, the Si solute precipitates on the Al matrix and increases the thermal diffusivity compared with that after the quenched state. In particular, the increase of the thermal diffusivity is equal to 10 mm/s2 without relation to the Si contents in the Al-Si alloy, which seems to corresponded to solute amount of Si 1 wt% in the Al matrix.

Effects of High Pressure Treatment on Cured Colour Development and Residual Nitrite Level in Model System

  • Hong, Geun-Pyo;Park, Sung-Hee;Kim, Jee-Yeon;Ko, Se-Hee;Lee, Sung;Min, Sang-Gi
    • Proceedings of the Korean Society for Food Science of Animal Resources Conference
    • /
    • 2006.05a
    • /
    • pp.325-328
    • /
    • 2006
  • In low nitrite level, treatment of combined with pressure and thermal processing improved cured meat colour comparing with that of only thermal processing. However, visual colour of only pressurised treatment could not be improved at low nitrite level. Pressure treatment could develop cured meat colour when high nitrite level was added. Moreover, pressurisation combined with thermal processing decreased nitrite residuals compared to thermal processing. Therefore the results indicated that pressurisation combined with thermal processing had potential benefits in appearance of cured meat products, promising improved food safety.

  • PDF

Characteristic Change of PVDF-$SiO_2$ Composite Nanofibers with Different Thermal Treatment Temperature (열처리 온도에 따른 PVDF-$SiO_2$ 복합나노섬유의 특성 변화)

  • Kim, Young-Jin
    • Polymer(Korea)
    • /
    • v.35 no.6
    • /
    • pp.605-609
    • /
    • 2011
  • Composite nanofibers were prepared by electrospinning and thermal treatment from poly (vinylidene fluoride) (PVDF)-$SiO_2$ blend solution. The nanofibers were stacked on layers to produce fully interconnected pores. TEM micrographs and EDX spectra confirmed the presence of $SiO_2$ in the composite nanofibers. The porosity of nanofibers was effectively enhanced by the introduction of electrospinning technique. ATR-FTIR and XRD results revealed that PVDF in the composite nanofibers exhibited the mixture crystal structure of ${\alpha}$-phase and ${\beta}$-phase. The crystal structure of ${\alpha}$-phase and crystallinity increased by the thermal treatment. In addition, the mechanical properties, thermal stability and hydrophobicity were markedly amplified by the thermal treatment.

Effect of Thermal Post-Treatment using the Black Body Networking of Carbon Nano Structure For Internal Conduction from Solar Radiation (태양복사열 내부전도 성능향상을 위한 탄소 나노구조체 흑체코팅 열처리 효과연구)

  • Kim, Dae Weon;Jang, Seong Min;Lee, Du Hui;Park, June Yi;Kim, Young Bae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.4
    • /
    • pp.159-164
    • /
    • 2021
  • The Improvement of thermal performance using heat treatment of carbon nanotubes coated on the copper heat sink to take the radiation energy from solar ray for the energy harvesting in earth orbit. Using the additive coating of purified CNT for the increase of specific area and development of thermal conductive capacity, the performance of heat transfer is improved about 0.181 K/W while applying the power of 22 W under temperature of 3.98℃. Coating of purified CNT shows increase of area and volume of thermal layer however it led the partial thermal resistance.

Effect of Stabilization Processing Conditions on the Thermal Shrinkage and the Thermal Stability of Rayon Fabrics Untreated and Surface-Treated with Phosphoric Acid (인산처리 유·무에 따른 레이온직물의 열수축과 열안정성에 미치는 안정화 공정 조건의 영향)

  • Cho, Donghwan;Lee, Jongmoon;Park, Jong Kyoo
    • Journal of Adhesion and Interface
    • /
    • v.5 no.3
    • /
    • pp.10-17
    • /
    • 2004
  • We investigated the effect of stabilization processing parameters on the thermal shrinkage, thermal stability and microstructure of rayon fabrics stabilized under various conditions such as heating rate, stabilization temperature, atmosphere gas, and chemical treatment. The presence and absence of phosphoric acid treatment and the heating rate have most importantly influenced the thermal shrinkage and the weight change of rayon fabrics. Especially, the phosphoric acid treatment decreases the reduction of thickness, length, and weight of the fabrics by about 80%, 20%, and 26%, respectively, in comparison with the untreated counterparts, showing the protective effectiveness of the thermal shrinkage involved. The thermal stability of stabilized rayon fabrics is also affected by all the processing conditions used: stabilization temperature, phosphoric acid treatment, atmosphere gas, and heating rate. In addition, the surface and diameter of the stabilized fiber significantly depend on the treatment of phosphoric acid prior to stabilization process.

  • PDF

Effects of Thermal Treatment on Antioxidant Activity in Yam (Dioscorea batatas DECNE.)

  • Kim, Han-Soo;Duan, Yishan;Ryu, Jae-Young;Kim, Sang-Woo;Jang, Seong-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.127-135
    • /
    • 2015
  • The aim of this study was to investigate the antioxidant activity of thermal treatment yam (Dioscorea batatas DECNE.) in Korea. Thermal treatment yam was extracted by different solvents including 70% methanol, 70% ethanol and chloroform-methanol mixture (CM, 2:1, v/v). Then color property, total phenol content and antioxidant activity were analyzed. Yam possessed high $L^*$ value and $H\limits^{\circ}$ value, which were $54.92{\pm}2.18$ and $73.20{\pm}0.77$, respectively. Thermal treatment yam exhibited great antioxidant activity evaluated by ABTS [2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt] radical scavenging activity, DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity, reducing power, and ferric reducing antioxidant power. Total phenol contents of various extracts from thermal treatment yam increased in the following order: 70% methanol extract ($63.53{\pm}0.33mg\;CAE/g$), 70% ethanol extract ($69.47{\pm}1.00mg\;CAE/g$) and CM extract ($97.49{\pm}0.66mg\;CAE/g$), respectively. The same trend was also could be found in antioxidant activity assays except for reducing power assay. These results implied that these extracts from thermal treatment yam might be useful to take a good part in prevention of human diseases and aging.

Evaluation of Non-Thermal Decontamination Processes to Have the Equivalence of Thermal Process in Raw Ground Chicken

  • Park, Eunyoung;Park, Sangeun;Hwang, Jeong Hyeon;Jung, Ah Hyun;Park, Sung Hee;Yoon, Yohan
    • Food Science of Animal Resources
    • /
    • v.42 no.1
    • /
    • pp.142-152
    • /
    • 2022
  • The present study was aimed at examining the antibacterial effects of nonthermal decontamination processes, which are equivalent to thermal treatment, to ensure microbiological safety of raw ground chicken. Escherichia coli or Salmonella were inoculated into 25 g of raw ground chicken samples. The raw ground chicken samples were non-treated or treated with high hydrostatic pressure (HHP) at 500 MPa (1-7 min), light-emitting diode (LED) irradiation at 405 nm wavelength (30-120 min), and heat at 70℃, 90℃ (1-60 min), and 121℃ (1-15 min). E. coli and Salmonella cell counts were enumerated after treatments. Moreover, the color parameters of treated raw ground chicken were analyzed. HHP treatment reduced E. coli and Salmonella cell counts by more than 5 Log CFU/g and more than 6 Log CFU/g after 7 min and 1 min, respectively; these effects were equivalent to those of thermal treatment. However, LED irradiation reduced Salmonella cell counts by only 0.9 Log CFU/g after 90 min of treatment, and it did not reduce E. coli cell counts for 90 min. Compared with those of the non-treated samples, the ΔE (total color difference) values of the samples treated with HHP were high, whereas the ΔE values of the samples treated with LED irradiation were low (1.93-2.98). These results indicate that despite color change by HHP treatment, HHP treatment at 500 MPa could be used as a non-thermal decontamination process equivalent to thermal treatment.

A Study on Dimensional Stability and Thermal Performance of Superheated Steam Treated and Thermal Compressed Wood

  • Chung, Hyunwoo;Han, Yeonjung;Park, Jun-Ho;Chang, Yoon-Seong;Park, Yonggun;Yang, Sang-Yun;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.2
    • /
    • pp.184-190
    • /
    • 2016
  • Recently, wood is attracting attention as green building interior decoration material. When wood is used as building interior decoration material, excellent dimensional stability and thermal performance is required. In this study, superheated steam treatment process and thermal compression process were applied to flat sawn Pinus koraiensis wood panel in order to improve dimensional stability and thermal performance. According to results of this study, superheated steam treatment process and thermal compression process improve thermal performance and dimensional stability of wood, especially in tangential direction. The spring back in radial direction reduces the effect of thermal compression on dimensional stability of wood in radial direction.