Browse > Article
http://dx.doi.org/10.3740/MRSK.2020.30.9.474

Effect of Precipitation and Dissolution of Si on the Thermal Diffusivity in the Al-Si Alloy System  

Kim, Yumi (Korea Institute of Industrial Technology)
Kim, Youngchan (Korea Institute of Industrial Technology)
Choi, Seweon (Korea Institute of Industrial Technology)
Publication Information
Korean Journal of Materials Research / v.30, no.9, 2020 , pp. 474-479 More about this Journal
Abstract
The effect of precipitation and dissolution of Si on the thermal diffusivity in the Al-Si alloy system is reported in this study and solution heat treatment followed by aging treatment is carried out to determine the effects of heat treatment on the thermal characteristics. The solution treatment is performed at 535 ℃ for 4 and 10 h and then the specimens are cooled by rapid quenching. The samples are aged at 300 ℃ for 4 h to precipitate Si solute. The addition of 9 wt% silicon contents makes the thermal diffusivity decrease from 78 to 74 mm/s2 in the cases of solid solution treated and quenched samples. After quenching and aging, the Si solute precipitates on the Al matrix and increases the thermal diffusivity compared with that after the quenched state. In particular, the increase of the thermal diffusivity is equal to 10 mm/s2 without relation to the Si contents in the Al-Si alloy, which seems to corresponded to solute amount of Si 1 wt% in the Al matrix.
Keywords
thermal diffusivity; aluminum-silicon system; thermal analysis; Si precipitation; Si dissolution;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. M. Tritt, Thermal Conductivity: Theory, Properties and Applications, p.21, 1st ed. Kluwer Academic/Plemum publishers, USA (2004).
2 J. R. Davis, Aluminum and Aluminum Alloys, p.320-368, 1st ed, ASM international, USA (2006).
3 L. F. Mondolfo, Aluminum Alloys: Structure and Properties, p.56-63, 1st ed, Elsevier, Butterworth, UK (2013).
4 G. E. Totten and D. S. MacKenzie, Handbook of Aluminum, Vol. 1: Physical Metallurgy and Processes, p.81-114, 1st ed, Marcel Dekker inc., USA (2003).
5 V. S. Zolotorevsky, N. A. Belov and M. V. Glazoff, Casting Aluminum Alloys: Their physical and mechanical metal lurgy, p.313-414, Elselvier, Butterworth-Heine mann, UK (2007).
6 R. X. Li, R. D. Li, Y. H. Zhao, L. Z. He, C. X. Li, H. R. Guan and Z. Q. Hu, Mater. Lett., 58, 2096 (2004).   DOI
7 J. R. Davis, Aluminum and Aluminum Alloys, p.200-240, The Materials Information Society, USA (2001).
8 J. L. Murray and A. J. McAlister, Bull. Alloy Phase Diagrams, 5, 74 (1984).   DOI
9 P. Schumacher, S. Pogatscher, M. J. Starink, C. Schick, V. Mohles and B. Milkereit, Thermochim. Acta, 602, 63 (2015).   DOI
10 F. Lasagni, M. Dumont, C. Salamida, J. A. Acuna and H. P. Degischer, Int. J. Mater. Res., 100, 1005 (2009).   DOI
11 S. K. Son, M. Takeda, M. Mitome, Y. Bando and T. Endo, Mater. Lett., 59, 629 (2005).   DOI
12 N. Haghdadi, A. Zarei-Hanzaki, H. R. Abedi and O. Sabokpa, Mater. Sci. Eng., A, 549, 93 (2012).   DOI
13 S.-W. Choi, Y.-M. Kim and Y.-C. Kim, J. Alloys Compd., 775, 132 (2019).   DOI
14 Y. M. Kim, S. W. Choi and S. K. Hong, J. Alloys Compd., 687, 54 (2016).   DOI
15 J. Buha, R. N. Lumley, A. G. Crosky and K. Hono, Acta Mater., 55, 3015 (2007).   DOI
16 L. C. Doan, K. Nakai, Y. Matsuura, S. Kobayashi and Y. Ohmor, Mater. Trans., 43, 1371 (2002).   DOI