• Title/Summary/Keyword: Thermal Resistance

Search Result 2,918, Processing Time 0.027 seconds

Design and Verification of Housing and Memory Board for Downsizing for Crash Protected Memory Module (충돌보호메모리모듈의 소형화를 위한 하우징 및 메모리 보드 설계와 검증)

  • Kim, Jun-Hyoung;Kim, Jung-Pil;Kim, Jeong-Yeol;Kim, Tae-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.1
    • /
    • pp.81-88
    • /
    • 2020
  • Flight data recorder is a equipment that records data required for investigation of aircraft accidents and should be developed in compliance with the ED-112A standard. Unlike general data storage device, flight data recorder must be able to recover data after an aircraft accident, requiring a housing and a memory board to protect data in extreme environments. To attain this performance, we designed a housing that can withstand the test by analyzing the physical environment of the impact, shear/tensile, penetration resistance and static crush test of the crash survival test and minimized the size and weight compared to the existing one in consideration of the installation of the aircraft in this paper. Insulation material and thermal block material were applied to endure high and low temperature fire so that the internal temperature does not rise above 150℃ even in 260℃, 10 hour environment. In addition, the memory board is designed to minimize the size and we devise a hoping programming method to prevent continuous data loss of more than 16 seconds. Through this, Crash protected memory module that satisfies ED-112A was completed.

A Study on Wasteform Properties of Spent Salt Treated with Zeolite and SAP (염화염을 제올라이트와 SAP로 처리한 고화체의 특성연구)

  • Kim, Hwan-Young;Park, Hwan-Seo;Kang, Kweon-Ho;Ahn, Byung-Gil;Kim, In-Tae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.2
    • /
    • pp.99-105
    • /
    • 2010
  • This paper investigated the characteristics of wasteform containing a spent zeolite used as a separating agent of FPs for recycling LiCl waste which would be generated from pyrochemical process of spent PWR fuel. In this study, a conventional borosilicate and Ca-rich glass were used as a consolidating agent for spent zeolite and it's mixing ratio was changed in the range, $25{\sim}35wt%$. The leach rates of Cs and Sr had about $0.1{\sim}0.01g/m^2day$ and $0.001{\sim}0.0001g/m^2day$, respectively. The leach resistance of Cs increased with amount of SAP and it showed about 10 times higher in the Ca-rich glass wasteform than in the conventional borosilciate glass wasteform. The compressive strength of wasteform was affected with the amount of glass. Thermal expansion rate of containing 30wt% glass has relatively lower than others. Also, the melting temperature was little changed in given mixing ratio of glass.

A Study on the Characterization of Anthracite Fly Ash for the Fabrication of Calcinated Brick (소성블릭 제조를 위한 무연탄 석탄회의 특성 연구)

  • Yu Yeon-Tae;Kim Byoung-Gyu;Choi Young-Yoon;Nam Chul-Woo;Lee Yeng-Seok;Kim Cheon-Sun
    • Resources Recycling
    • /
    • v.13 no.2
    • /
    • pp.16-23
    • /
    • 2004
  • To increase the recycling rate of anthracite fly ash, the properties of anthracite fly ash were compared to that of bituminous fly ash. Especially, the high temperature properties of the fly ash are investigated by using thermal analysis, high temperature microscope and X-ray diffraction analysis for utilizing anthracite fly ash to prepare the calcinated bricks. The average ratio of $A1_2$$O_3$/$SiO_2$ for anthracite is 0.62 and the ratio for bituminous is 0.34. The content of $SiO_2$ in anthracite fly ash was higher than that of bituminous fly ash. The $A1_2$$O_3$ of anthracite fly ash reacted with the $A1_2$$O_3$ in the fly ash and formed new mullite crystal at over $1000^{\circ}C$, so anthracite fly ash showed high fire resistance. And, the fly ash mixtures having kaolin were prepared, and then extruded in vacuum to evaluate the extruding property of anthracite fly ash mixture. The extruding velocity was decrease with increasing the addition amount of fly ash in the mixture, and the maximum addition amount of fly ash that could be extruded was 60 wt%.

Behavior of Implanted Dopants and Formation of Molybdenum Siliclde by Composite Sputtering (Composite target으로 증착된 Mo-silicide의 형성 및 불순물의 거동)

  • Cho, Hyun-Choon;Paek, Su-Hyon;Choi, Jin-Seog;Hwang, Yu-Sang;Kim, Ho-Suk;Kim, Dong-Won;Shim, Tae-Earn;Jung, Jae-Kyoung;Lee, Jong-Gil
    • Korean Journal of Materials Research
    • /
    • v.2 no.5
    • /
    • pp.375-382
    • /
    • 1992
  • Molybdenum silicide films have been prepared by sputtering from a single composite MoS$i_2$ source on both P, B$F_2$respectively implanted (5${\times}10^{15}ions/cm^2$ single crystal and P implanted (5${\times}10^{15}ions/cm^2$) polycrystalline silicon substrates followed by rapid thermal annealing in the ambient of argon. The heat treatment temperatures have been varied in the range of 600-l20$0^{\circ}C$ for 20 seconds. The properties of Mo-silicide and the diffusion behaviors of dopant after the heat treatment are investigated using X-ray diffraction, scanning electron microscopy(SEM) , secondary ions mass spectrometry(SIMS), four-point probe and $\alpha-step.$ Annealing at 80$0^{\circ}C$ or higher resulted in conversion of the amorphous phase into predominantly MoS$i_2$and a lower sheet resistance. There was no significant out-diffusion of dopants from both single crystal and polycrystalline silicon substrate into molybdenum silicide layers during annealing.

  • PDF

Characteristics of Nickel_Titanium Dual-Metal Schottky Contacts Formed by Over-Etching of Field Oxide on Ni/4H-SiC Field Plate Schottky Diode and Improvement of Process (Ni/4H-SiC Field Plate Schottky 다이오드 제작 시 과도 식각에 의해 형성된 Nickel_Titanium 이중 금속 Schottky 접합 특성과 공정 개선 연구)

  • Oh, Myeong-Sook;Lee, Jong-Ho;Kim, Dae-Hwan;Moon, Jeong-Hyun;Yim, Jeong-Hyuk;Lee, Do-Hyun;Kim, Hyeong-Joon
    • Korean Journal of Materials Research
    • /
    • v.19 no.1
    • /
    • pp.28-32
    • /
    • 2009
  • Silicon carbide (SiC) is a promising material for power device applications due to its wide band gap (3.26 eV for 4H-SiC), high critical electric field and excellent thermal conductivity. The Schottky barrier diode is the representative high-power device that is currently available commercially. A field plate edge-terminated 4H-SiC was fabricated using a lift-off process for opening the Schottky contacts. In this case, Ni/Ti dual-metal contacts were unintentionally formed at the edge of the Schottky contacts and resulted in the degradation of the electrical properties of the diodes. The breakdown voltage and Schottky barrier height (SBH, ${\Phi}_B$) was 107 V and 0.67 eV, respectively. To form homogeneous single-metal Ni/4H-SiC Schottky contacts, a deposition and etching method was employed, and the electrical properties of the diodes were improved. The modified SBDs showed enhanced electrical properties, as witnessed by a breakdown voltage of 635 V, a Schottky barrier height of ${\Phi}_B$=1.48 eV, an ideality factor of n=1.04 (close to one), a forward voltage drop of $V_F$=1.6 V, a specific on resistance of $R_{on}=2.1m{\Omega}-cm^2$ and a power loss of $P_L=79.6Wcm^{-2}$.

Preparation and characterization of high density polyethylene/silane treated pulverized-phenol resin composites (고밀도 폴리에틸렌과 실란 처리된 분쇄페놀수지 복합재의 제조 및 특성)

  • Park, Jun-Seo;Han, Chang-Gue;Nam, Byeong-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.27-33
    • /
    • 2016
  • Phenolic resin has excellent heat resistance and good mechanical properties as a thermosetting resin. However, its thermosetting characteristics cause it to produce a non-recyclable waste in the form of sprue and runner which is discarded and represents up to 15~20% of the overall products. Forty thousand tons of phenolic resin sprue and runner are disposed of (annually). The (annual) cost of such domestic waste disposal is calculated to be 20 billion won. In this study, discarded phenol resin scraps were pulverized and treated by silanes to improve their interfacial adhesion with HDPE. The sizes of the pulverized pulverulent bodies and fine particles were (100um~1000um) and (1~100um), respectively. The pulverized phenol resin was treated with 3-(methacryloyloxy) propyltrimethoxysilane and vinyltrimethoxy silane and the changes in its characteristics were evaluated. The thermal properties were evaluated by DSC and HDT. The mechanical properties were assessed by a notched Izod impact strength tester. When the silane treated phenol resin was added, the heat distortion temperature of HDPE increased from $77^{\circ}C$ to $96^{\circ}C$ and its crystallinity and crystallization temperature also increased. Finally, its impact strength and tensile strength increased by 20% and 50%, respectively, in comparison with the non-treated phenol resin.

A REVIEW ON THE ODSCC OF STEAM GENERATOR TUBES IN KOREAN NPPS

  • Chung, Hansub;Kim, Hong-Deok;Oh, Seungjin;Boo, Myung Hwan;Na, Kyung-Hwan;Yun, Eunsup;Kang, Yong-Seok;Kim, Wang-Bae;Lee, Jae Gon;Kim, Dong-Jin;Kim, Hong Pyo
    • Nuclear Engineering and Technology
    • /
    • v.45 no.4
    • /
    • pp.513-522
    • /
    • 2013
  • The ODSCC detected in the TSP position of Ulchin 3&4 SGs are typical ODSCC of Alloy 600MA tubes. The causative chemical environment is formed by concentration of impurities inside the occluded region formed by the tube surface, egg crate strips, and sludge deposit there. Most cracks are detected at or near the line contacts between the tube surface and the egg crate strips. The region of dense crack population, as defined as between $4^{th}$ and $9^{th}$ TSPs, and near the center of hot leg hemisphere plane, coincided well with the region of preferential sludge deposition as defined by thermal hydraulics calculation using SGAP computer code. The cracks developed homogeneously in a wide range of SGs, so that the number of cracks detected each outage increased very rapidly since the first detection in the $8^{th}$ refueling outage. The root cause assessment focused on investigation of the difference in microstructure and manufacturing residual stress in order to reveal the cause of different susceptibilities to ODSCC among identical six units. The manufacturing residual stress as measured by XRD on OD surface and by split tube method indicated that the high residual stress of Alloy 600MA tube played a critical role in developing ODSCC. The level of residual stress showed substantial variations among the six units depending on details of straightening and OD grinding processes. Youngwang 3&4 tubes are less susceptible to ODSCC than U3 and U4 tubes because semi-continuous coarse chromium carbides are formed along the grain boundary of Y3&4 tubes, while there are finer less continuous chromium carbides in U3 and U4. The different carbide morphology is caused by the difference in cooling rate after mill anneal. There is a possibility that high chromium content in the Y3&4 tubes, still within the allowable range of Alloy 600, has made some contribution to the improved resistance to ODSCC. It is anticipated that ODSCC in Y5&6 SGs will be retarded more considerably than U3 SGs since the manufacturing residual stress in Y5&6 tubes is substantially lower than in U3 tubes, while the microstructure is similar with each other.

Mechanical Properties of NBR Rubber Composites Filled with Reinforced Fiber and Ceramics (강화섬유와 세라믹이 충진된 NBR 고무 복합체의 기계적 물성 특성)

  • Kwon, Byeong-Jin;Kim, Young-Min;Lee, Danbi;Park, Soo-Yong;Jung, Jinwoong;Chung, Ildoo
    • Journal of Adhesion and Interface
    • /
    • v.22 no.4
    • /
    • pp.118-127
    • /
    • 2021
  • In this study, the mechanical properties of vulcanized rubber were evaluated through compounding by controlling filler content to improve the mechanical properties of NBR rubber. Aramid and glass fibers with excellent heat resistance were used as fillers, and ceramics were additionally used in anticipation of a complementary effect, and as for the ceramic materials, needle-shaped and plate-shaped ceramics were used. Each filler was used in an amount of 5.0, 10.0, 15.0, and 20.0 phr in order to investigate the basic properties according to the amount of filler. To confirm the complementary effect through ceramic application, each 10.0 phr fiber and ceramic were mixed with 1:1 ratio to evaluate mechanical properties. As a result, it was confirmed that the decreasing ratio of tensile strength after heat aging was small in the order of aramid fiber, acicular ceramic, glass fiber, and plate ceramic in the case of applying the filler alone. In addition, the mechanical characteristics of vulcanized rubber using composite filler based on fibers and ceramics were evaluated, and it was confirmed that the composite filler had a complementary effect on thermal aging.

A Study on the Modification of NH4+Y-zeolite for Improving Adsorption/Desorption Performance of Benzene (NH4+Y-zeolite의 개질을 통한 벤젠 흡·탈착 성능 증진 연구)

  • Jang, Young Hee;Noh, Young Il;Lee, Sang Moon;Kim, Sung Su
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.33-39
    • /
    • 2019
  • A.C (activated carbon) is mainly used to remove VOCs (volatile organic compounds), however, it has many problems such as fire risk due to increasing of adsorbent surface temperature during VOCs ad/desorption, increased cost by frequent replacement cycles requirement and performance degradation when containing moisture. In order to solve these problems, many researches, hydrophobic zeolite adsorbents, have been reported. In this study, $NH_4{^+}Y$-zeolite was synthesized with Y-zeolite through steam treatment and acid treatment, which is one of the hydrophobic modification methods, to secure high surface area, thermal stability and humidity resistance. The Y, Y-550-HN, Y-600-HN and Y-650-HN had adsorption capacities of $23mg\;g^{-1}$, $38mg\;g^{-1}$, $77mg\;g^{-1}$, $61mg\;g^{-1}$. The change of Si/Al ratio, which is an index to confirm the degree of modification, was confirmed by XRF (X-ray fluorescence spectrometer) analysis. As a result, the adsorbtion performance was improved when Y-zeolite modified, and the Si/Al ratio of Y, Y-550-HN, Y-600-HN, Y-650-HN were increased to 3.1765, 6.6706, 7.3079, and 7.4635, respectively. Whereas it was confirmed that structural crystallization due to high heat treatment temperature affected performance degradation. Therefore, there is an optimal heat treatment temperature of Y-zeolite, optimum modification condition study could be a substitute for activated carbon as a condition for producing an adsorbent having high durability and stability.

Evaluation of Lateral Load Resistance and Heating/Cooling/Lighting Energy Performance of a Post-disaster Refugees Housing Using Lightweight composite Panels (경량 복합패널을 활용한 구호주거의 횡하중 저항성능 및 냉난방조명 에너지성능 평가)

  • Hwang, Moon-Young;Lee, Byung-Yun;Kang, Su-Min;Kim, Sung-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.252-262
    • /
    • 2019
  • Following the earthquake in Gyeongju (2016) and Pohang (2017), South Korea is no longer a safe place for earthquakes. Accordingly, the need for shelters suitable for disaster environments is increasing. In this study, a lightweight composite panel was used to produce post-disaster housing for refugees to compensate for the disadvantages of existing evacuation facilities. For this purpose, an evaluation of structural performance and thermal environment for post-disaster housing for refugees composed of lightweight composite panels was performed. To assess the structural performance, a lateral loading test was conducted on a system made of lightweight composite panels. The specimens consisted of two types, which differed according to the bonding method, as a variable. In addition, the seismic and wind loads were calculated in accordance with KBC 2016 and compared with the experimental results. Regarding the energy performance, optimization of south-facing window planning and window-wall ratio and solar heat gain coefficient were analyzed to minimize heating, cooling, and lighting energy. As a result, the specimens composed of lightweight composite panels will perform sufficiently safely for lateral loads and the optimized window planning will lead to a low-energy operation.