DOI QR코드

DOI QR Code

Preparation and characterization of high density polyethylene/silane treated pulverized-phenol resin composites

고밀도 폴리에틸렌과 실란 처리된 분쇄페놀수지 복합재의 제조 및 특성

  • Park, Jun-Seo (Department of Applied Chemical Engineering, School of Energy.Materials.Chemical Engineering, Korea University of Technology and Education) ;
  • Han, Chang-Gue (SHIN HEUNG CHEMICAL CO.,LTD.) ;
  • Nam, Byeong-Uk (Department of Applied Chemical Engineering, School of Energy.Materials.Chemical Engineering, Korea University of Technology and Education)
  • 박준서 (한국기술교육대학교 에너지.신소재.화학공학과) ;
  • 한창규 ((주)신흥화학) ;
  • 남병욱 (한국기술교육대학교 에너지.신소재.화학공학과)
  • Received : 2016.06.22
  • Accepted : 2016.09.09
  • Published : 2016.09.30

Abstract

Phenolic resin has excellent heat resistance and good mechanical properties as a thermosetting resin. However, its thermosetting characteristics cause it to produce a non-recyclable waste in the form of sprue and runner which is discarded and represents up to 15~20% of the overall products. Forty thousand tons of phenolic resin sprue and runner are disposed of (annually). The (annual) cost of such domestic waste disposal is calculated to be 20 billion won. In this study, discarded phenol resin scraps were pulverized and treated by silanes to improve their interfacial adhesion with HDPE. The sizes of the pulverized pulverulent bodies and fine particles were (100um~1000um) and (1~100um), respectively. The pulverized phenol resin was treated with 3-(methacryloyloxy) propyltrimethoxysilane and vinyltrimethoxy silane and the changes in its characteristics were evaluated. The thermal properties were evaluated by DSC and HDT. The mechanical properties were assessed by a notched Izod impact strength tester. When the silane treated phenol resin was added, the heat distortion temperature of HDPE increased from $77^{\circ}C$ to $96^{\circ}C$ and its crystallinity and crystallization temperature also increased. Finally, its impact strength and tensile strength increased by 20% and 50%, respectively, in comparison with the non-treated phenol resin.

페놀수지는 열경화성 수지로서 우수한 내열성 및 기계적 물성을 가지고 있다. 하지만 열경화 특성으로 인해 사용 후 재활용이 어렵고, 전체 생산량의 15~20%가 스프루와 런너 형태로 폐기되고 있다. 4만 톤의 페놀수지 스프루와 런너가 버려지고 있으며 폐기된 페놀 스프루와 런너 처리비용은 연간 200억원으로 추정된다. 본 실험에서는 폐기되는 스프루와 런너를 분쇄하고 폴리에틸렌과의 표면접착력 향상을 위해 실란 표면처리를 하였다. 분쇄된 입자의 크기는 100~1000um의 분체와 1~100um의 미분으로 나누어 실험하였다. 분쇄된 페놀은 실란 작용기에 따른 특성을 평가하기 위해 3-(Methacryloyloxy) propyltrimethoxysilane 과 Vinyltrimethoxy silane으로 처리되었다. 입자의 크기를 분석하기 위해 입도분석기를 사용였다. 열적 특성은 DSC(Differential Scanning Calorimetry)와 HDT(heat deflection temperature)를 통하여 분석하였다. 기계적 물성의 측정은 UTM(universal testing machine)과 notched izod impact tester로 평가하였다. 전처리한 페놀수지 파우더를 첨가시, 고밀도 폴리에틸렌(HDPE)의 열변형온도가 $77^{\circ}C$에서 최대 $96^{\circ}C$까지 향상되었으며, 결정화도와 결정화 온도가 증가하였다. 결론적으로, 실란 전처리 하지 않았을 경우와 비교했을 때 충격강도는 50%가 인장강도는 20%가 상승하였다.

Keywords

References

  1. Pickering, S. J., "Recycling technologies for thermoset composite materials-current status," Composites Part A: Applied Science and Manufacturing vol. 37, no. 8, pp. 1206-1215, 2006. DOI: http://dx.doi.org/10.1016/j.compositesa.2005.05.030
  2. Ishak, Z. A., et al., "Effect of silane-based coupling agents and acrylic acid based compatibilizers on mechanical properties of oil palm empty fruit bunch filled high-density polyethylene composites," Journal of applied polymer science, vol. 68, no. 13, pp. 2189-2203, 1998. DOI: http://dx.doi.org/10.1002/(SICI)1097-4628(19980627)68:13<2189::AID-APP16>3.0.CO;2-V
  3. Osterholtz, F. D. and E. R. Pohl., "Kinetics of the hydrolysis and condensation of organofunctional alkoxysilanes: a review," Journal of Adhesion Science and Technology, vol. 6, no. 1, pp. 127-149, 1992. DOI: http://dx.doi.org/10.1163/156856192X00106
  4. FU, Shao-Yun, et al., Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Composites Part B: Engineering, vol. 39, no. 6, pp. 933-961, 2008. DOI: http://dx.doi.org/10.1016/j.compositesb.2008.01.002
  5. ONUEGBU, Genevive C., et al., The effects of filler contents and particle sizes on the mechanical and end-use properties of snail shell powder filled polypropylene. Materials Sciences and Applications, vol. 2, no. 07, pp. 810, 2011. DOI: http://dx.doi.org/10.4236/msa.2011.27110
  6. Dubnikova, I. L., S. M. Berezina, and A. V. Antonov., "Effect of rigid particle size on the toughness of filled polypropylene," Journal of applied polymer science, vol. 94, no. 5, pp1917-1926, 2004. DOI: http://dx.doi.org/10.1002/app.21017
  7. SILVERMAN, Edward M., Effect of glass fiber length on the creep and impact resistance of reinforced thermoplastics. Polymer composites, vol. 8, no. 1, pp. 8-15, 1987. DOI: http://dx.doi.org/10.1002/pc.750080103
  8. THOMASON, J. L.; VLUG, M. A., Influence of fibre length and concentration on the properties of glass fibre-reinforced polypropylene: 4. Impact properties. Composites Part A: Applied Science and Manufacturing, vol. 28, no. 3, pp277-288, 1997. DOI: http://dx.doi.org/10.1016/S1359-835X(96)00127-3
  9. Kim, Seong Hun, Seon Hoon Ahn, and Toshihiro Hirai, Polymer, vol. 44, pp. 5625-5634, 2003. https://doi.org/10.1016/S0032-3861(03)00623-2
  10. Tjong, S. C., and S. P. Bao., "Preparation and nonisothermal crystallization behavior of polyamide 6/montmorillonite nanocomposites," Journal of Polymer Science Part B: Polymer Physics, vol. 42, no. 15, pp. 2878-2891, 2004. DOI: http://dx.doi.org/10.1002/polb.20161
  11. Velasco, J. I., J. A. De Saja, and A. B. Martinez., "Crystallization behavior of polypropylene filled with surface-modified talc," Journal of applied polymer science, vol. 61, no. 1, pp. 125-132, 1996. DOI:http://dx.doi.org/10.1002/(SICI)1097-4628(19960705)61:1<125::AID-APP14>3.0.CO;2-6
  12. Takemori, Michael T., "Towards an understanding of the heat distortion temperature of thermoplastics," Polymer Engineering & Science, vol. 19, no. 15, pp. 1104-1109, 1979. DOI: http://dx.doi.org/10.1002/pen.760191507