• 제목/요약/키워드: Thermal Pyrolysis

검색결과 286건 처리시간 0.025초

DMEAA를 이용한 알루미늄 PACVD법의 개발 (Development of Al plasma assisted chemical vapor deposition using DMEAA)

  • 김동찬;김병윤;이병일;김동환;주승기
    • 전자공학회논문지A
    • /
    • 제33A권10호
    • /
    • pp.98-106
    • /
    • 1996
  • A thin film of aluminum for ultra large scale integrated circuits metalization has been deposited on TiN and SiO$_{2}$ substrates by plasma assisted chemical vapor deposition using DMEAA (dimenthylethylamine alane) as a precursor. The effects of plasma on surface topology and growth characteristics were investigated. Thermal CVD Al could not be got continuous films on insulating subsrate such as SiO$_{2}$. However, it was found that Al films could be deposited on SiO$_{2}$ substate without any pretreatments by the hydrogen plasma for pyrolysis of DMEAA. Compared to the thermal CVD, PACVD films showed much better reflectance and resistance on TiN and SiO$_{2}$ substrate. We obtained mirror-like PACVD Al film of 90% reflectance and resistance on TiN and SiO$_{2}$ substrates. We obtained mirror-like PACVD Al film of 90% reflectance on TiN substrate. Excellent conformal step coverage was obtained on submicron contact holes ;by the PACVD blanket deposition.

  • PDF

${\alpha}$-셀룰로오즈의 열분해에 관한 연구(I) - 산촉매 NaCl의 영향 - (Kinetics of Pyrolysis Degradation of on ${\alpha}-Cellulose$. - Effect of Acid Catalysts NaCl-)

  • 나상도;황준호;최경선;설수덕;손진언
    • Elastomers and Composites
    • /
    • 제31권2호
    • /
    • pp.122-129
    • /
    • 1996
  • The Thermal decomposition of the ${\alpha}-Cellulose$ and NaCl was studied using a thermal analysis technique in the steam of nitrogen gas with 30ml/min at various heating ranges from 4 to $20^{\circ}C/min$. The Derivative and Integral method used to be obtained values of activation energy of decomposition reaction. 1. The values of activation energy evaluated by Derivative and Intergral method were consistent with each other very well. 2. The maximum value of heat of decomposition evalated by DSC method was ${\alpha}-Cellulose/NaCl= 90/10$. 3. The thermogravimetric trace curve agreed with the theoretical equation.

  • PDF

열경화성 고분자 복합재 구조물의 축대칭 유한요소해석 (Axisymmetric Finite Element Analysis of Decomposing Polymeric Composites and Structures)

  • 이선표
    • 연구논문집
    • /
    • 통권24호
    • /
    • pp.81-96
    • /
    • 1994
  • To investigate failure mechanisms observed in carbon-phenolic thermal insulators, differential equations which govern the decomposition process in a deformable anisotropic porous solid are derived for three-dimensional axisymmetric constructions. The governing equations not only couple the material deformation with pore pressure, but also couple pressure and temperature, which means that heat convected by the pyrolysis gases is properly accounted for. Then the Bubnov-Galerkin finite element method is applied to these equations to transform them into a semidescrete finite element system. A thermal insulation liner in the cowl region under typical operating conditions is analyzed to find a mechanism for plylift. The results from the structural analysis show across-ply failure in the cowl zone. The mechanism for plylift is hypothesized as a sequential procedure : 1) the across-ply failure which is the precursor to plylift and 2) the local fiber buckling caused by generation of excessive in-plane compressive stress. To prevent plylift, the across-ply stress can be reduced by using appropriate material ply angles in cowl zone design.

  • PDF

항공우주용 리오셀계 탄소/페놀릭 복합재료의 내열 성능 평가 (Evaluation of Heat Resistance of Lyocell-based Carbon/Phenolic for Aerospace)

  • 서상규;김연철;배지열;함희철;황태경
    • 한국항공우주학회지
    • /
    • 제49권5호
    • /
    • pp.355-363
    • /
    • 2021
  • 리오셀계 탄소/페놀릭 복합재료의 항공우주용 내열 부품 적용 가능성을 확인하기 위하여 내열성능 평가 및 열 해석을 수행하였다. 탄소/페놀릭의 열반응 평가는 내열성능평가모터(Thermal Protection Evaluation Motor, TPEM)로 수행되었다. 본 논문에서는 열 해석을 위해 유체의 경계층 해석을 고려한 경계층 적분 코드와 삭마 및 열분해를 고려한 MSC-Marc 2018 코드를 사용하였다. 추진기관의 압력 곡선, 연소 시험 후 절개된 목삽입재 시편을 통하여 삭마 및 단열성능을 분석하였고, 리오셀계 탄소/페놀릭 복합재료의 열반응은 레이온계 탄소/페놀릭 재료와 유사하였다. 연소시험을 통한 결과를 바탕으로 국산 리오셀계 탄소/페놀릭의 항공우주용 내열 부품으로의 적용 가능성을 확인하였다.

Wood-wool board로 활용(活用)을 위한 폐목재(廢木材)의 열분해(熱分解) 및 파쇄특성(破碎特性) (Pyrolysis and Breaking Characteristics of Waste Wood for Wood-wool Board)

  • 박상민;김재우;심기섭;박상숙
    • 자원리싸이클링
    • /
    • 제19권2호
    • /
    • pp.19-27
    • /
    • 2010
  • 폐목재를 고온고압장치를 사용하여 나무의 결대로 파쇄 후 건축재료로의 활용을 위하여 등급별로 분류하여 열분해 및 파쇄특성을 알아보았다. 그 결과, TG/DTA 그래프에서 $250^{\circ}C$에서 급격한 무게감소가 발생하는데, 건축재료로의 활용을 위해서는 $250^{\circ}C$이하의 온도에서 처리가 되어야 한다. 고압파쇄 실험결과 활엽수보다는 침엽수가 나무의 결대로 잘 찢어짐을 알 수 있었으며, 그 중 편백나무(W-7)가 가장 양호한 결과를 나타내었다. 다양한 조건의 실험결과, 온도는 $200^{\circ}C$, 압력은3MPa이 최적조건임을 확인할 수 있었다.

초음파 분무 열분해법으로 제조한 ZnO막의 전기적, 구조적 특성에 미치는 인듐 확산 효과 (Indium Diffusion Effects on the Structural and Electrical Properties of ZnO Films Prepared by Ultrasonic Spray Pyrolysis)

  • 심대근;배성찬;마대영
    • 한국전기전자재료학회논문지
    • /
    • 제14권10호
    • /
    • pp.828-834
    • /
    • 2001
  • Zinc oxide (ZnO) films deposited on indium (In) films were post-annealed in a rapid thermal anealing (RTA) system. The ZnO/In films were RTA-treated in air or a vacuum ambient. The crystallographic properties and surface morphologies of the films were studied before and after the RTA by X-ray diffraction(XRD) and scanning electron microscopy (SEM), respectively. The resistivity variation of the films with RTA temperature and time was measured by the 4-point probe method. Auger electron spectroscopy (AES) was carried out to figure out the redistribution of indium atoms in the ZnO films. The resistivity of the ZnO/In films decreased to 2$\times$10$\^$-3/ Ωcm by diffusion of the In. The In diffusion into the ZnO films roughened the surface of ZnO films. The results of depth profile by AES showed a hump of In atoms around ZnO/In interface after the RTA at 800 $\^{C}$. The effects of temperature time and ambient during the RTA on the structural and electrical properties of the ZnO/In films were discussed.

  • PDF

Effect of Bark Content and Densification Temperature on The Properties of Oil Palm Trunk-Based Pellets

  • Wistara, Nyoman J;Rohmatullah, Moh Arif;Febrianto, Fauzi;Pari, Gustan;Lee, Seung-Hwan;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • 제45권6호
    • /
    • pp.671-681
    • /
    • 2017
  • Oil palm trunk (OPT) is a potential source of biomass for the production of biopellet. In the present research, biopellet were prepared from the meristem part of 25 years old OPT with various percentages of its bark (0, 10, and 30%). The highest biopellet durability was found for biopellet produced at $130^{\circ}C$ of pelletizing temperature with 30% bark content. Scanning electron microscopy (SEM) of biopellet showed the weak of particle bonding due to the low pelletizing pressure. The moisture content, unit density, ash content, and caloric value of OPT-based pellets were 3.55-5.35%, $525.56-855.23kg/m^3$, 2.76-3.44%, and 17.89-19.14 MJ/kg, respectively. The combustion profiles obtained by thermogravimetric analysis (TGA) seemed to be unaffected by the bark content on. Differential thermal analysis of TGA curve indicated different pyrolysis characteristic of hemicellulose, cellulose, and lignin.

Characterization for Pyrolysis of Thermoplastic Polyurethane by Thermal Analyses

  • Kang Suk-Hwan;Ku Dong-Cheol;Lim Jung-Hun;Yang Yun-Kyu;Kwak Noh-Seok;Hwang Taek-Sung
    • Macromolecular Research
    • /
    • 제13권3호
    • /
    • pp.212-217
    • /
    • 2005
  • The pyrolysis kinetics of polyurethanes synthesized from polycaprolactone diol (PCL) and diisocyanate (HDI, $H_{12}MDI$) using catalysts such as dibutyltin dilaurate (DBTDL) were studied by a thermogravimetric (TG) technique, which involved heating the sample at the rates of 10, 20 and $30^{\circ}C$/min. The effect of the kind of diisocyanate and the hard segment contents on the activation energy and reaction order were examined at conversions ranging from 1 to $100\%$. The activation energies at first increased slowly with increasing conversion. Also, differential scanning calorimetry (DSC) was used to investigate the structural differences in each polyurethane. DSC can reveal the melting behavior, in terms of the glass transition temperature ($T_g$), which is known to vary as a function of the stoichiometry and processing conditions.

면직물의 음이온화에 관한 연구 (A Study on the Anionisation of Cotton Fabric)

  • 배도규;이태정
    • 한국염색가공학회지
    • /
    • 제30권1호
    • /
    • pp.29-37
    • /
    • 2018
  • Cotton has no adsorption ability for the cationic dye and heavy metal but, if anionized cotton can be made, it will be possible. In this study, to enable the anionisation of cotton fabric, it was modified using sodium vinylsolfonate(SV) as the anionisation reagent, employing a pad-dry-cure(PDC) technique. The effects of curing time, treatment concentrations of urea, sodium hydroxide and SV on the weight increase were experimented and then, the physical characterizations of sulfoethyl cotton(SEC) depending on the finishing conditions were estimated, thus the application possibility of SV as anionisation reagent was investigated. It was not much changed by anionisation except wrinkle recovery. And the structure of SEC was elucidated by Raman and NMR spectoscopy. The feasibility of using Raman and NMR spectroscopy with the band at $1,043cm^{-1}$, and 50.5ppm, respectively as marker band to determine sulfoethyl group of SEC was reported. The total degree of SV substitution(DSV) was determined via elemental analysis. SEC with diverse total DSV up to 0.066 was obtained. In the thermal decomposition(pyrolysis) by DSC, it can be found that the pyrolysis temperature was about $30^{\circ}C$ lower than that of non-treated cotton fabric.

고온 열분해 환경의 다공성 탄소/페놀릭 복합재의 열기계적 거동 (Thermomechanical Behavior of Porous Carbon/Phenolic Composites in Pyrolysis Environments)

  • 김성준;한수연;신의섭
    • 한국항공우주학회지
    • /
    • 제39권8호
    • /
    • pp.711-718
    • /
    • 2011
  • 본 논문에서는 열화학적 분해 및 열기계학적 변형이 고려된 구성 방정식을 사용하여 다공성 탄소/페놀릭 복합재료의 열탄성 거동을 예측하였다. 다공성 복합재료의 온도 의존성 및 열화학적 분해 과정에서의 기공도, 분해 가스에 의한 기공 압력, 재료의 수축을 고려하였다. 기공도와 기공 압력이 고려된 대표 체적 요소 모델의 유한요소 해석을 통해 산출된 거시적 기공 탄성 계수를 구성 방정식에 적용하였다. 간단한 수치 실험을 통해 기공탄성 계수가 다공성 재료의 열탄성 거동에 미치는 영향을 분석하였으며, 재료 내부에 형성된 기공과 기공 압력에 의한 응력 구배 및 변형을 확인하였다.