Browse > Article
http://dx.doi.org/10.5658/WOOD.2017.45.6.671

Effect of Bark Content and Densification Temperature on The Properties of Oil Palm Trunk-Based Pellets  

Wistara, Nyoman J (Department of Forest Products, Faculty of Forestry, Bogor Agricultural University (IPB), Kampus IPB Darmaga)
Rohmatullah, Moh Arif (Department of Forest Products, Faculty of Forestry, Bogor Agricultural University (IPB), Kampus IPB Darmaga)
Febrianto, Fauzi (Department of Forest Products, Faculty of Forestry, Bogor Agricultural University (IPB), Kampus IPB Darmaga)
Pari, Gustan (Forest Research and Development Agency, Gunung Batu)
Lee, Seung-Hwan (College of Forest & Environmental Sciences, Kangwon National University)
Kim, Nam-Hun (College of Forest & Environmental Sciences, Kangwon National University)
Publication Information
Journal of the Korean Wood Science and Technology / v.45, no.6, 2017 , pp. 671-681 More about this Journal
Abstract
Oil palm trunk (OPT) is a potential source of biomass for the production of biopellet. In the present research, biopellet were prepared from the meristem part of 25 years old OPT with various percentages of its bark (0, 10, and 30%). The highest biopellet durability was found for biopellet produced at $130^{\circ}C$ of pelletizing temperature with 30% bark content. Scanning electron microscopy (SEM) of biopellet showed the weak of particle bonding due to the low pelletizing pressure. The moisture content, unit density, ash content, and caloric value of OPT-based pellets were 3.55-5.35%, $525.56-855.23kg/m^3$, 2.76-3.44%, and 17.89-19.14 MJ/kg, respectively. The combustion profiles obtained by thermogravimetric analysis (TGA) seemed to be unaffected by the bark content on. Differential thermal analysis of TGA curve indicated different pyrolysis characteristic of hemicellulose, cellulose, and lignin.
Keywords
oil palm trunk; biopellet; durability; pyrolysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 American Society of Agricultural and Biological Engineers Standards. 2003. Cubes, Pellets, and Crumbles - Definitions and Methods for Determining Density, Durability, and Moisture Content. American Society of Agricultural and Biological Engineers, St. Joseph, USA.
2 Basu, R. 2010. Biomass gasification and pyrolysis practical design. Elsevier Inc., New York, USA.
3 Badan Pusat Statistik. 2014. Luas Tanaman Perkebunan Besar Menurut Jenis Tanaman, Indonesia (000 Ha), 1995 - 2013 [Internet] [referred: 2014 September 22]. http://www.bps.go.id/tab_sub/view.php?tabel=1&daftar=1&id_ subyek=54.
4 Browning, B.L.1967. Methods of wood chemistry vol1. Interscience Publisher, New York, USA.
5 Chow, P., Nakayama, F.S., Blahnik, B., Youngquist, J.A., Coffelt, T.A. 2008. Chemical constituents and physical properties of guayule wood and bark. Industrial Crops and Products 28: 303-308.   DOI
6 Dence, C.W. 1992. The determination of lignin. In: Lin, S.Y., Dence, C.W., eds. Methods of Lignin Chemistry. Springer-Verlag, New York, USA.
7 Deutsches Institut fur Normung European standards 14961-2. 2012. Solid biofuels - Fuel specification and classes - Part 2: Wood pellets for non-industrial use. Deutsches Institut fur Normung, Germany.
8 Dungani, R., Jawaid, M., Khalil, H.P.S.A., Jasni, Aprilia, S., Hakeem, K.R., Hartati, S., Islam, M.N. 2013. A review on quality enhancement of oil palm trunk waste by resin impregnation: future materials. BioResources 8(2): 3136-3156.
9 Fasina, O.O. 2008. Physical properties of peanut hull pellets. Bioresource Technology 99: 1259-1266.   DOI
10 Ferre, A.J.C., Sanchez, J.C.S., Medina, F.J.S., Alonso, J.P., Marti, B.V. 2014. Prediction models for higher heating value based on the structural analysis of the biomass of plant remains from the greenhouses of Almería (Spain). Fuel 166: 377-387.
11 Filbakk, T., Jirjis, R., Nurmi, J., Hoibo, O. 2011. The effect of bark content on quality parameters of Scots pine (Pinus sylvestris L.) pellets. Biomass and Bioenergy 35: 3342-3349.   DOI
12 Kaliyan, N., Morey, R.V. 2009a. A review of factors affecting strength and durability of densified biomass products. Biomass and Bioenergy 33: 337-359.   DOI
13 Kaliyan, N., Morey, R.V. 2009b. Constitutive model for densification of corn stover and switchgrass. Biosystems Engineering 104: 47-63.   DOI
14 Kaliyan, N., Morey, R.V. 2009c. Densification characteristics of corn stover and switchgrass. Transactions of the ASABE. 52(3): 907-920.   DOI
15 Kaliyan, N., Morey, R.V. 2010. Natural binders and solid bridge type binding mechanisms in briquettes and pellets made from corn stover and switchgrass. Bioresource Technology 10: 1082-1090.
16 Kim, J.Y., Hwang, H., Oh, S., Kim, Y.S., Kim, U.J., Choi, J.W. 2014. Investigation of structural modification and thermal characteristics of lignin after heat treatment. International Journal of Biological Macromolecules 66: 57-65.   DOI
17 Kosugi, A., Tanaka, R., Magara, K., Murata, Y., Arai, T., Sulaiman, O., Hashim, R., Hamid, Z.A.A., Yahya, M.K.A., Yusof, M.N.H., Ibrahim, W.A., Mori, Y. 2010. Ethanol and lactic acid production using sap squeezed from old oil palm trunks felled for replanting. Journal of Bioscience and Bioengineering 10 (3): 322-325.
18 Lehmann, B., Schroder, H.W., Wollenberg, R., Repke, J.U. 2012. Effect of miscanthus addition and different grinding processes on the quality of wood pellets. Biomass and Bioenergy 44: 150-159.   DOI
19 Lamaming, J., Hashim, R., Sulaiman, O., Sugimoto, T., Sato, M., Hiziroglu, S. 2014. Measurement of some properties of binderless particleboards made from young and old oil palm trunks. Measurement 47: 813-819.   DOI
20 Lee, S.M., Ahn, B.J., Choi, D.H., Han, G.S., Jeong, H.S., Ahn, S.H., Yang I. 2013. Effects of densification variables on the durability of wood pelets fabricated with Larix kaempferi C. And Liriodendron tulipifera L. sawdust. Biomass and Bioenergy 48: 1-9.   DOI
21 Obernberger, I., Thek, G. 2004. Physical characterization and chemical composition of densified biomass fuels with regard to their combustion behavior. Biomass and Bioenergy 27: 653-669.   DOI
22 Parthasarathy, P., Narayanan, K.S., Arockiam, L. 2013. Study on kinetic parameters of different biomass samples using thermo-gravimetric analysis. Biomass and Bioenergy 58: 58-66.   DOI
23 Pasangulapati, V., Ramachandriya, K.D., Kumar, A., Wilkins, M.R., Jones, C.L., Huhnke, R.L. 2012. Effects of cellulose, hemicellulose and lignin on thermochemical conversion characteristics of selected biomass. Bioresource Technology 114: 663-669.   DOI
24 Prawitwong, P., Kosugi, A., Arai, T., Deng, L., Lee, K.C., Ibrahim, D., Murata, Y., Sulaiman, O., Hashim, R., Sudesh, K., Ibrahim, W.A.B, Saito, M., Mori, Y. 2012. Efficient ethanol production from separated parenchyma and vascular bundle of oil palm trunk. Bioresource Technology 125: 37-42.   DOI
25 Stelte, W., Holm, J., Sanadi, A., Barsberg, S., Ahrenfeldt, J., Henriksen, U.B. 2011. A study of bonding and failure mechanisms in fuel pellets from different biomass resources. Biomass and Bioenergy 35: 910-918.   DOI
26 Rabier, F., Temmerman, M., Bohm, T., Hartmann, H., Jensen, P.D., Rathbauer, J., Carrasco, J., Fernandez, M. 2006. Particle density determination of pellets and briquettes. Biomass and Bioenergy 30: 954-963.   DOI
27 Samuelsson, R., Larsson, S.H., Thyrel, M., Lestander, T.A. 2012. Moisture content and storage time influence the binding mechanisms in biofuel wood pellets. Applied Energy 99: 109-115.   DOI
28 Stefanidis, S.D., Kalogiannis, K.S., Iliopoulou, E.F., Michailof, C.M., Pilvachi, P.A., Lappas, A.A. 2014. A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin. Journal of Analytical and Applied Pyrolysis 105: 143-150.   DOI
29 Tabil, L.G. 1996. Binding and pelleting characteristics of alfalfa [tesis]. Canada (US): University of Saskatchewan.
30 Technical Association of Pulp and Paper Industry. 1998. TAPPI Test Methods. Tappi Press, Atlanta, USA.
31 Tejado, A., Pena, C., Labidi, J., Echeverria, J.M., Mondragon, I. 2007. Physico-chemical characterization of lignin from different sources for use in phenol-formaldehyde resin synthesis. Bioresource Technology 98: 1655-1663.   DOI
32 Telmo, C., Lousada, J. 2011. Heating values of wood pellets from different species. Biomass and Bioenergy 35: 2634-2639.   DOI
33 Carroll, J.P., Finnan, J. 2012. Physical and chemical properties of pellets from energy crops and cereal straws. Biosystems Engineering 112: 151-159.   DOI
34 Temmerman, M., Rabier, F., Jensen, P.D., Hartmann, H., Bohm, T. 2006. Comparative study of durability test methods for pellets and briquettes. Biomass and Bioenergy 30: 964-972.   DOI
35 Theerarattananoon, K., Xu, F., Wilson, J., Ballard, R., Mckinney, L., Staggenborg, S., Vadlani, P., Pei, Z.J., Wang D. 2011. Physical properties of pellets made from sorghum stalk, corn stover, wheat straw, and big bluestem. Industrial Crops and Products 33: 325-332.   DOI
36 Thomas, M., Zuilichem, D.G., Poel, A.F.B. 1997. Physical quality of pelleted animal feed. 2. Contribution of processes and its conditions. Animal Feed Science and Technology 64: 173-192.   DOI
37 Yang, H., Yan, R., Chen, H., Lee, D.H., Zheng, C. 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86: 1781-1788.   DOI
38 Yamada, H., Tanaka, R., Sulaiman, O., Hashim, R., Hamid, Z.A.A., Yahya, M.K.A., Kosugi, A., Arai, T., Murata, Y., Nirasawa, S., Yamamoto, K., Ohara, S., Yusof, M.H.M., Ibrahim, W.A., Mori, Y. 2010. Old oil palm trunk: A promising source of sugars for bioethanol production. Biomass and Bioenergy 34: 1608-1613.   DOI