• Title/Summary/Keyword: Thermal Network

Search Result 535, Processing Time 0.029 seconds

Dynamic modeling of the hydraulic-thermal behavior of the buried pipe network for district heating (지역난방용 지중매설 배관망 네트워크 열-유체 동적 거동 모델링)

  • Lee, Jeongbin;Yi, Jun Young;Kim, Lae-Hyun;Shin, Chee Burm
    • Journal of Energy Engineering
    • /
    • v.21 no.2
    • /
    • pp.144-151
    • /
    • 2012
  • A district heating system produces thermal energy and supplies it to a large region. District heating systems can provide higher efficiencies and better pollution control than localized boilers. The heat generated by a district heating system is distributed to the customer via a network of insulated pipes. For the optimal operation of a district heating system, it is important to predict the distributions of pressure, flow rate and temperature of heating fluid within the network of pipes at various operating conditions. In this work, a mathematical modeling was performed to predict the dynamic hydraulic-thermal behaviors of heating fluid in the network of pipes for a district heating system. The mathematical model accounts for the conservations of mass, momentum and energy. In order to verify the validity of modeling, the modeling results were compared with the monitoring data of Gang-nam Branch of District Heating.

The development of RF Control System For the High-Speed Thermal Printer (고속 Thermal Printer의 무선원격제어장치 개발)

  • Woo, Chun-Hee;Han, Tae-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.53 no.2
    • /
    • pp.94-99
    • /
    • 2004
  • In this paper, We design a RF control system capable of handling multiple POS thermal printers. The system has three parts including embedded master controller, RF controller and high-speed thermal printer. Specially the designed linux embedded controller has simple structure and high performance to connect the TCP/IP network. The effectiveness of the developed RF control system is shown by proposed food ordering system.

Development of Technology for Network Construction using Wide Area Energy (광역에너지이용 네트워크 구축 기술개발)

  • Kim, Lae-Hyun;Chang, Won-Seok;Hong, Jae-Jun
    • Journal of Energy Engineering
    • /
    • v.17 no.3
    • /
    • pp.125-138
    • /
    • 2008
  • In order to diversify energy source and to utilize it effectively, it requires to construct an integrated energy management system in a wide area. This research paper explores the core technology of network construction using wide area energy and applies the technology to the field. In specific, it examines the business model by developing l) construction technology of optimum integrated system for thermal supply on wide area network related IT technology, 2) technology of unutilized energy as heat pump using exhaust gas latent heat, and 3) thermal transportation and storage technology using various sources, and by evaluating the applicability and marketability of the model in the field.

Effect of packing structure on anisotropic effective thermal conductivity of thin ceramic pebble bed

  • Wang, Shuang;Wang, Shuai;Wu, Bowen;Lu, Yuelin;Zhang, Kefan;Chen, Hongli
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2174-2183
    • /
    • 2021
  • Helium cooled solid breeder blanket as an important blanket candidate of the Tokamak fusion reactor uses ceramic pebble bed for tritium breeding. Considering the poor effective thermal conductivity of the ceramic breeder pebble bed, thin structure of tritium breeder pebble bed is usually adopted in the blanket design. The container wall has a great influence on the thin pebble bed packing structure, especially for the assembly of mono-sized particles, and thin pebble bed will appear anisotropic effective thermal conductivity phenomenon. In this paper, thin ceramic pebble beds composed of 1 mm diameter Li4SiO4 particles are generated by the EDEM 2.7. The effective thermal conductivity of different thickness pebble beds in the three-dimensional directions are analyzed by three-dimensional thermal network method. It is observed that thin Li4SiO4 pebble bed showing anisotropic effective thermal conductivity under the practical design size. Normally, the effective thermal conductivity along the bed vertical direction is higher than the horizontal direction due to the gravity effect. As the thickness increases from 10 mm to 40 mm, the effective thermal conductivity of the pebble bed gradually increases.

Modeling of a Building System and its Parameter Identification

  • Park, Herie;Martaj, Nadia;Ruellan, Marie;Bennacer, Rachid;Monmasson, Eric
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.975-983
    • /
    • 2013
  • This study proposes a low order dynamic model of a building system in order to predict thermal behavior within a building and its energy consumption. The building system includes a thermally well-insulated room and an electric heater. It is modeled by a second order lumped RC thermal network based on the thermal-electrical analogy. In order to identify unknown parameters of the model, an experimental procedure is firstly detailed. Then, the different linear parametric models (ARMA, ARX, ARMAX, BJ, and OE models) are recalled. The parameters of the parametric models are obtained by the least square approach. The obtained parameters are interpreted to the parameters of the physically based model in accordance with their relationship. Afterwards, the obtained models are implemented in Matlab/Simulink(R) and are evaluated by the mean of the sum of absolute error (MAE) and the mean of the sum of square error (MSE) with the variable of indoor temperature of the room. Quantities of electrical energy and converted thermal energy are also compared. This study will permit a further study on Model Predictive Control adapting to the proposed model in order to reduce energy consumption of the building.

Development of ANN- and ANFIS-based Control Logics for Heating and Cooling Systems in Residential Buildings and Their Performance Tests (인공지능망과 뉴로퍼지 모델을 이용한 주거건물 냉난방 시스템 조절 로직 및 예비 성능 시험)

  • Moon, Jin-Woo
    • Journal of the Korean housing association
    • /
    • v.22 no.3
    • /
    • pp.113-122
    • /
    • 2011
  • This study aimed to develop AI- (Artificial Intelligence) based thermal control logics and test their performance for identifying the optimal thermal control method in buildings. For this objective, a conventional Two-Position On/Off logic and two AI-based variable logics, which applied ANN (Artificial Neural Network) and ANFIS (Adaptive Neuro-Fuzzy Inference System), have developed. Performance of each logic was tested in a typical two-story residential building in U.S.A. using the computer simulation incorporating MATLAB and IBPT (International Building Physics Toolbox). In the analysis of the test results, AI-based control logic presented the advanced thermal comfort with stability compared to the conventional logic while they did not show significant energy saving effects. In conclusion, the predictive and adaptive AI-based control logics have a potential to maintain interior air temperature more comfortably, and the findings in this study could be a solid foundation for identifying the optimal thermal control method in buildings.

Resonance frequency and stability of composite micro/nanoshell via deep neural network trained by adaptive momentum-based approach

  • Yan, Yunrui
    • Geomechanics and Engineering
    • /
    • v.28 no.5
    • /
    • pp.477-491
    • /
    • 2022
  • In the present study, the effects of thermal loading on the buckling and resonance frequency of graphene platelets (GPL) reinforced nano-composites are examined. Functionally graded (FG) material properties are considered in thickness direction for the thermal responses of the composite. The equivalent material properties are obtained using Halphin-Tsai nano-mechanical model for composite layers. Moreover, the effects of nano-scale sizes are taken into account, employing functionally modified couple stress (FMCS) parameter. In this regard, for the first time, it is demonstrated that at certain values of GPL weight fraction, thermal buckling occurs. In obtaining results of vibrational behavior, both analytical solution and deep neural network (DNN) methods are used. The DNN method needs low computational costs to predict the resonance behavior. A comprehensive parametric study is conducted to indicate the effects of several geometrical, material, and loading conditions on the vibrational and buckling behavior of cylindrical shell structures made of GPL-nanocomposites. It is shown that the effect of temperature change on the occurrence of buckling is vital while it has a negligible impact on the resonance frequency of the structure. Moreover, the size-dependency of the results is demonstrated, and it cannot be neglected in nano-scales.

Loading Effects on Thermal Conductivity of Soils: Particle-Scale Study (하중 조건이 지반의 열전도도에 미치는 영향: 입자 스케일에서의 연구)

  • Lee, Jung-Hwoon;Choo, Jin-Hyun;Yun, Tae-Sup;Lee, Jang-Guen;Kim, Young-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.9
    • /
    • pp.77-86
    • /
    • 2011
  • The stress condition mainly dominates the thermal conductivity of soils whereas governing factors such as unit weight and porosity suggested by empirical correlations are still valid. The 3D thermal network model enables evaluation of the stress-dependent thermal conductivity of particulate materials generated by discrete element method (DEM). The relationship among dominant factors is analyzed based on the coordination number and porosity determined by stress condition and thermal conductivity of pore fluid. Results show that the variation of thermal conductivity is strongly attributed to the enlargement of inter-particle contact area by loading history and pore fluid conductivity. This study highlights that the anisotropic evolution of thermal conductivity depends on the directional load and that the particle-scale mechanism mainly dictates the heat transfer in soils.

A new thermal conductivity estimation model for weathered granite soils in Korea

  • Go, Gyu-Hyun;Lee, Seung-Rae;Kim, Young-Sang;Park, Hyun-Ku;Yoon, Seok
    • Geomechanics and Engineering
    • /
    • v.6 no.4
    • /
    • pp.359-376
    • /
    • 2014
  • Thermal conductivity of ground has a great influence on the performance of Ground Heat Exchangers (GHEs). In general, the ground thermal conductivity significantly depends on the density (or porosity) and the moisture content since they are decisive factors that determine the interface area between soil particles which is available for heat transfer. In this study, a large number of thermal conductivity experiments were conducted for soils of varying porosity and moisture content, and a database of thermal properties for the weathered granite soils was set up. Based on the database, a 3D Curved Surface Model and an Artificial Neural Network Model (ANNM) were proposed for estimating the thermal conductivity. The new models were validated by comparing predictions by the models with new thermal conductivity data, which had not been used in developing the models. As for the 3D CSM, the normalized average values of training and test data were 1.079 and 1.061 with variations of 0.158 and 0.148, respectively. The predictions became somewhat unreliable in a low range of thermal conductivity values in considering the distribution pattern. As for the ANNM, the 'Logsig-Tansig' transfer function combination with nine neurons gave the most accurate estimates. The normalized average values of training data and test data were 1.006 and 0.954 with variations of 0.026 and 0.098, respectively. It can be concluded that the ANNM gives much better results than the 3D CSM.

ON-ORBIT THERMAL ANALYSIS FOR THE GEOSTATIONARY OCEAN COLOR IMAGER OF A GEOSTATIONARY SATELLITE (정지궤도위성의 해양관측센서 임무 궤도 열해석)

  • Kim, Jung-Hoon;Jun, Hyoung-Yoll
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.135-141
    • /
    • 2009
  • A preliminary thermal analysis is performed for the optical payload system of a geostationary satellite. The optical payload considered in this paper is GOCI(Geostationary Ocean Color Imager) of COMS of Korea. The radiative and conductive thermal models are employed in order to predict thermal responses of the GOCI on the geostationary orbit. According to the results of this analysis are as follows: 1) the GOCI instrument thermal control is satisfactory to provide the temperatures for the GOCI performances, 2) the thermal control is defined and interfaces are validated, and 3) the entrance baffle temperature is found slightly out its specification, therefore further detailed analyses should be continued on this element.

  • PDF