Browse > Article
http://dx.doi.org/10.1016/j.net.2021.01.013

Effect of packing structure on anisotropic effective thermal conductivity of thin ceramic pebble bed  

Wang, Shuang (School of Mechanical Engineering, Anhui Polytechnic University)
Wang, Shuai (Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China)
Wu, Bowen (School of Mechanical Engineering, Anhui Polytechnic University)
Lu, Yuelin (School of Mechanical Engineering, Anhui Polytechnic University)
Zhang, Kefan (School of Nuclear Science and Technology, University of Science and Technology of China)
Chen, Hongli (School of Nuclear Science and Technology, University of Science and Technology of China)
Publication Information
Nuclear Engineering and Technology / v.53, no.7, 2021 , pp. 2174-2183 More about this Journal
Abstract
Helium cooled solid breeder blanket as an important blanket candidate of the Tokamak fusion reactor uses ceramic pebble bed for tritium breeding. Considering the poor effective thermal conductivity of the ceramic breeder pebble bed, thin structure of tritium breeder pebble bed is usually adopted in the blanket design. The container wall has a great influence on the thin pebble bed packing structure, especially for the assembly of mono-sized particles, and thin pebble bed will appear anisotropic effective thermal conductivity phenomenon. In this paper, thin ceramic pebble beds composed of 1 mm diameter Li4SiO4 particles are generated by the EDEM 2.7. The effective thermal conductivity of different thickness pebble beds in the three-dimensional directions are analyzed by three-dimensional thermal network method. It is observed that thin Li4SiO4 pebble bed showing anisotropic effective thermal conductivity under the practical design size. Normally, the effective thermal conductivity along the bed vertical direction is higher than the horizontal direction due to the gravity effect. As the thickness increases from 10 mm to 40 mm, the effective thermal conductivity of the pebble bed gradually increases.
Keywords
Effective thermal conductivity; Anisotropy; Pebble bed; Discrete element method; Three-dimensional thermal network method;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Petersen, The Properties of Helium: Density, Specific Heats, Viscosity, and Thermal Conductivity at Pressures from 1 to 100 Bar and from Room Temperature to about 1800 K, Jul. Gjellerup, 1970.
2 J. Zheng, et al., A measurement platform scheme and data post-processing method for thermal conductivity of Li4SiO4 pebble beds, J. Fusion Energy 35 (3) (2017) 524-528.   DOI
3 Y. Feng, et al., Experimental investigation of thermal properties of the Li4SiO4 pebble beds, J. Plasma Fusion Res. 11 (SERIES) (2015).
4 D. Mandal, et al., Experimental investigation of heat transfer in gasesolid packed fluidized bed, Powder Technol. 246 (2013) 252-268.   DOI
5 A. Abou-Sena, et al., Experimental measurements of the effective thermal conductivity of a lithium titanate (Li2TiO3) pebbles-packed bed, Med. Prog. Technol. 181 (2007) 206-212.
6 M. Moscardini, et al., Discrete element method for effective thermal conductivity of packed pebbles accounting for the Smoluchowski effect, Fusion Eng. Des. 127 (2018) 192-201.   DOI
7 S. Wang, et al., Crushed model and uniaxial compression analysis of random packed ceramic pebble bed by DEM, Fusion Eng. Des. 128 (2018) 53-57.   DOI
8 X. Wang, et al., Computational study on the behaviors of granular materials under mechanical cycling, J. Appl. Phys. 118 (2015) 174901.   DOI
9 E.U. Schlunder, Particle heat transfer, Munchen. Proceedings of the Seventh International Heat Transfer Conference, 1982, pp. 195-211.
10 M. Okazaki, et al., Effective thermal conductivity for granular beds of various binary mixtures, J. Chem. Eng. Jpn. 14 (3) (1981) 183-189.   DOI
11 S. Yagi, D. Kunii, Studies on effective thermal conductivities in packed beds, AIChE J. 3 (1957) 373-381.   DOI
12 P.A. Cundall, O. Strack, A discrete numerical model for granular assemblies, Geotechnique 29 (1) (1979) 47-65.   DOI
13 B. Gong, et al., Numerical investigation of the pebble bed structures for HCCB TBM, Fusion Eng. Des. 136 (2018) 1444-1451.   DOI
14 G. Zhou, et al., Design study on the new EU DEMO HCPB breeding blanket: thermal analysis, Prog. Nucl. Energy 98 (2017) 167-176.   DOI
15 K. Feng, et al., Current progress of Chinese HCCB TBM program, Fusion Eng. Des. 109 (2016) 729-735.   DOI
16 S. Wang, et al., Numerical influence analysis of the packing structure on ceramic breeder pebble beds, Fusion Eng. Des. 140 (2019) 41-47.   DOI
17 A. Abou-Sena, et al., Effective thermal conductivity of lithium ceramic pebble beds for fusion blankets: a review, Fusion Sci. Technol. 47 (4) (2005) 1094-1100.   DOI
18 G.K. Batchelor, R.W. O'brien, Thermal or electrical conduction through a granular material, Proc. Roy. Soc. Lond. A. 355 (1682) (1977) 313-333.   DOI
19 T.S. Yun, T.M. Evans, Three-dimensional random network model for thermal conductivity in particulate materials, Comput. Geotech. 37 (2010) 991-998.   DOI
20 N. Zaccari, D. Aquaro, Mechanical characterization of Li2TiO3 and Li4SiO4 pebble beds: experimental determination of the material properties and of the pebble bed effective values, Fusion Eng. Des. 82 (15-24) (2007) 2375-2382.   DOI
21 M.C. Billone, et al., ITER Solid Breeder Blanket Materials Database, Argonne National Lab., 1993.
22 N. Zaccari, D. Aquaro, Mechanical characterization of Li2TiO3 and Li4SiO4 pebble beds: experimental determination of the material properties and of the pebble bed effective values, Fusion Eng. Des. 82 (15-24) (2007) 2375-2382.   DOI
23 P. Gierszewski, Review of properties of lithium metatitanate, Fusion Eng. Des. 39 (1998) 739-743.   DOI
24 B. Gong, et al., Discrete element modeling of pebble bed packing structures for HCCB TBM, Fusion Eng. Des. 121 (2017) 256-264.   DOI
25 Y. Wan, et al., Overview of the present progress and activities on the CFETR, Nucl. Fusion 57 (10) (2017) 102009.   DOI
26 L. A, Artsimovich, Tokamak devices, Nucl. Fusion 12 (2) (1972) 215.   DOI
27 W. Dai, et al., The effects of packing structure on the effective thermal conductivity of granular media: a grain scale investigation, Int. J. Therm. Sci. 142 (2019) 266-279.   DOI
28 D. Garrett, H. Ban, Compressive pressure dependent anisotropic effective thermal conductivity of granular beds, Granul. Matter 13 (5) (2011) 685.   DOI
29 K.M. Feng, Overview of the ITER test blanket module program, Nucl. Fusion Plasma Phys. 26 (2006) 161-169.   DOI
30 S. Wang, et al., Effect of packing structure on mechanical properties of the pebble beds and the probability of particle crushing[J], Fusion Eng. Des. 162 (2021d) 112137.   DOI
31 H. Chen, et al., Conceptual design and analysis of the helium cooled solid breeder blanket for CFETR, Fusion Eng. Des. 96-97 (2015) 89-94.   DOI
32 F. Hernandez, et al., Overview of the HCPB research activities in EURO fusion, IEEE Trans. Plasma Sci. 46 (2018) 2246-2261.
33 H. Chen, et al., Theoretical and experimental study on effective thermal conductivity of pebble beds for fusion blanket, Fusion Eng. Des. 124 (2017) 792-796.   DOI
34 D. Mandal, et al., Experimental measurement of effective thermal conductivity of packed lithium-titanate pebble bed, Fusion Eng. Des. 87 (2012) 67-76.   DOI
35 X. Wang, et al., A prediction model for the effective thermal conductivity of mono-sized pebble beds, Fusion Eng. Des. 103 (2016) 136-151.   DOI
36 X. Gao, et al., Fabrication and characterization of Li4SiO4 ceramic pebbles by wet method, J. Nucl. Mater. 424 (2012) 210-215.   DOI
37 R.K. Desu, et al., DEM simulation of packing mono-sized pebbles into prismatic containers through different filling strategies, Fusion Eng. Des. 127 (2018) 259-266.   DOI
38 C. Kang, et al., Transient hot-Wire experimental system for measuring the effective thermal conductivity of a ceramic breeder pebble bed, Fusion Sci. Technol. 72 (3) (2017) 263-270.