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Modeling of a Building System and its Parameter Identification 
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Abstract – This study proposes a low order dynamic model of a building system in order to predict 
thermal behavior within a building and its energy consumption. The building system includes a 
thermally well-insulated room and an electric heater. It is modeled by a second order lumped RC 
thermal network based on the thermal-electrical analogy. In order to identify unknown parameters of 
the model, an experimental procedure is firstly detailed. Then, the different linear parametric models 
(ARMA, ARX, ARMAX, BJ, and OE models) are recalled. The parameters of the parametric models are 
obtained by the least square approach. The obtained parameters are interpreted to the parameters of the 
physically based model in accordance with their relationship. Afterwards, the obtained models are 
implemented in Matlab/Simulink® and are evaluated by the mean of the sum of absolute error (MAE) 
and the mean of the sum of square error (MSE) with the variable of indoor temperature of the room. 
Quantities of electrical energy and converted thermal energy are also compared. This study will permit 
a further study on Model Predictive Control adapting to the proposed model in order to reduce energy 
consumption of the building.  
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1. Introduction 
 
Nowadays, achieving low energy consumption in a 

building sector becomes an important issue for sustainable 
and eco-friendly development. More than a third of the 
total energy consumed in buildings is used for space 
heating and cooling. In order to reduce the heating and 
cooling energy demand of buildings, high thermal 
insulation of building envelopes is most often used for low 
energy buildings [1-2]. Since reinforcing thermal insulation 
prevents loosing heat through the building envelopes, the 
auxiliary heat gains, such as solar radiation, occupant’s 
metabolic heat, and heat dissipation of electrical equipment 
and appliances, and light can influence dominantly to the 
building’s indoor thermal condition. It is related to the 
building energy consumption and the indoor thermal 
comfort of occupants [3].  

To the purpose of low energy consumption within 
buildings, an optimal control of building thermal condition 
is additionally needed. As one of the techniques, Model 
Predictive Control (MPC) is suitable for the control of slow 
responding systems, such as buildings. Since it uses a 
model of the system and anticipates future loads, such as 
occupancy schedules, and weather forecasts of buildings, it 

performs better than the algorithm which is base on 
measurements. It can better control the output of the 
system and track the set-point [4].  

Most of the building energy simulation tools simulates 
thermal behavior of a building model, based on the 
fundamental laws of energy, heat, and mass transfer. The 
model represents all the physical components of the 
building system and consists of high-order differential 
equations. Although the high-order model can well 
describe its thermal behavior, it is not available for 
adapting the control algorithms. In order to acquire a low-
order model which is simple and appropriate to control 
strategy, model size reduction, black-box modeling, and 
grey-box modeling by computational methods have been 
used [5].  

A model size reduction method requires an initial model 
with a number of differential equations describing thermal 
behavior of the building. However, it is not easy to 
acquire the physical properties of existing buildings for 
establishing their initial models [6]. A black-box modeling 
method can describe the model behavior since it is based 
on the input-output measurements of the building system. 
Despite its simplicity and performance, the model is 
usually not available for other conditions of the building, 
and the parameters of the model have no physical meaning 
[7]. However, a gray-box modeling method is based on the 
physical properties of the building system. Moreover, it 
needs parametric identification methods in order to 
estimate the unknown parameters of the system. It can also 
interpret the physical meanings of the parameters estimated 
by mathematical relationship between input and output of 
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the system [8].  
This paper presents a gray-box modeling method for a 

building system with help of the correspondence between a 
thermal network and several linear parametric models. The 
building system which is modeled in this work consists of 
a well-insulated room and an electric heater. The well-
insulated room is considered as a small-sized low energy 
building. In sections 2, state-of-the-art literature related to 
the thermal modeling of building systems is firstly 
introduced. Then, a physically based model of the building 
system used for this study is then derived. It is based on the 
energy balance equation and the thermal-electrical analogy. 
The system is modeled by a second order lumped RC 
thermal network. In order to estimate the parameters of the 
model, experimental set-up and parameter identification 
method are presented in Section 3. The thermal parameters 
of the model are identified by using different linear 
parametric models (ARMA, ARX, ARMAX, BJ, and OE 
models) with their physical interpretation. Afterwards, in 
Section 4, the parameters obtained by these models are 
matching to the parameters of the physically driven model. 
The designed models with different parameters are 
implemented in Matlab/Simulink® and evaluated. Finally, 
conclusions are given in Section 5. 

 
 
2. Thermal Modeling of a Building System 

 
2.1 State-of-the-art literature 

 
On the level of modeling of a building system, a 

dynamic modeling is used for describing both temporal and 
spatial performance of the system. With the help of various 
information and computational calculations, more detailed 
and accurate results are expected [9]. As one of the 
dynamic modeling methods adapted to building systems, a 
thermal network using thermal-electrical analogy has been 
proposed since the mid- 1980s. The main advantage of this 
method is its simplicity. It is possible to express heat 
transfer phenomena by electrical components, add the 
supplementary heat sources obtained solar radiation, 
occupants, infiltration/ventilation and equipment, and 
analyze the systems with good accuracy and robustness 
[5, 10]. 

There is literature which presents methodologies to 
identify thermal parameters of the building systems. The 
parameters are obtained by experimental data and 
numerical calculations [10-14]. Reference [11] suggested a 
method to estimate the thermal parameters of building 
envelopes, especially the thermal capacitance of insulation 
materials of a wall by using a heat flow meter in laboratory. 
Reference [12] also estimated the thermal equivalent 
conductance and the thermal equivalent capacitance of a 
testing wall of a constructed building by conducting on 
experiments in situ. The parameters were obtained by 
treating the measured heat flux and the measured wall 

temperature. These are effective methods to characterize 
each of the building components. However, regarding their 
global thermal characteristics, the measured values for each 
component could not be available because of the existence 
of different thermal dynamic interactions within the 
building, and the global values of the building are not able 
to be directly measured.  

There have been several researches which present linear 
parameter models of the given buildings and that obtain 
their parameters by numerically treating the experimental 
results. Reference [13] was established several parametric 
models (ARX, ARMAX, BJ, and OE models) to identify 
the thermal behavior of an office and provided reasonably 
good predictions of indoor temperature and relative 
humidity. Moreover, [14] applied an ARX model and a 
neural network ARX model to the prediction of indoor 
temperature and relative humidity of an unoccupied 
residential building. These black-box modeling approaches 
do not require the physical properties and relying physical 
laws of the system to predict the system behavior, 
whereas the obtained parameters are not corresponding to 
any physical values of the system and only shows the 
mathematical relationship between inputs and outputs of 
the system.  

In this paper, the authors recall several empirically 
designed parametric models of a building system and 
estimate their parameters by the least square approach. 
However, unlikely to the previous works, the estimated 
parameters of this work are corresponding to the parameters 
of a physically driven thermal model which are proposed in 
the following subsection. Therefore, the physically 
interpreted values are able to be directly applied to the 
proposed thermal model for a validation and provide global 
thermal characteristics of the system. 

 
2.2 Physically driven model of a building system 

 
We propose a thermal network model of a building 

system. This modeling approach uses the analogy between 
a thermal system and an electrical system. The thermal-
electrical analogy is detailed in Table 1.  

This dynamic thermal network model of a building 
system is physically based on the first law of thermo-
dynamics and is deduced as follows: 

 
 x Ax Bu= +ɺ  (1) 

Table 1. Thermal-electrical analogy 

Thermal Electrical 
 

Parameter Unit Parameter Unit 
Temperature T [K] Voltage V [V] 

Source 
Heat flux Φ [W], [J/s] Current I [A], [C/s] 

Conductivity k [W/K/m] Conductivity σ [A/V/m] 
Stored heat Q [J] Stored charge q [C] 

Thermal 
resistance Rther 

[K/W] 
Electrical 

resistance Relec 
[Ω], 

[V/A] 
Element 

Thermal 
capacitance Cther 

[J/K] 
Electrical 

capacitance Celec 
[F], [C/V] 
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 y Cx Du= +  
 

where 
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 
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⋯

⋯

⋯

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

⋯

 

 
where x is the state vector, u is the input vector, y is the 
output vector. A, B, C, and D are the matrices of the model, 
T is the temperature [K]. Φ is the heat flux [W]. R and C in 
the matrices are the thermal resistance [K/W] and 
capacitance [J/K], respectively. The indexes m, n are the 
numbers of the temperature nodes and the heat sources, 
respectively.  

From the above model, an overall structure of an electric 
heater and a simplified well-insulated room is developed 
by a second order lumped RC (2R2C) thermal network.  

 

 

1 1

1

1
0

1
0

ap ap ap ap apap

ap th ii

ap th ap th th

ap elec

e

th th

R C R C TT

R R TT

R C R R C

C P

T

R C

 −     =    +      −
  
 
    +     
 
 

ɺ

ɺ

 (2) 

 
where indexes ap, th, i, and e represent the appliance 
model (electric heater), the thermal model of the building, 
the interior and the exterior of the building, respectively. 
Pelec is the electrical power [W] which is supplied to the 

electrical appliance, which is a heater in this work.  
Fig. 1 illustrates an equivalent electrical circuit which 

corresponds to Eq. (2). The electric heater model composes 
of 1R1C thermal parameters (Rap, Cap) and a power source 
Pelec. In addition, the simplified well-insulated room model 
consists of another first order thermal parameters (Rth, Cth) 
and the temperature Te. 

The temperatures of the heater and the room depend on 
the power consumption of the heater, the exterior 
temperature of the building, and the thermal parameters of 
the room and the heater. Among these quantities, the 
temperatures and the power consumption of the heater are 
measurable. From the physical laws and the measurable 
input and output data, the unknown thermal parameters can 
be obtained. As a consequence, the experiment design is 
necessary to collect the measurable data. The following 
section firstly describes the experimental procedure. Then, 
several different linear parametric models based on the 
measurement are presented. 

 
 

3. Parameter Identification 

 
3.1 Description of experiment 

 
3.1.1. Electric heater 

 
The heater used in this work is an electric convector 

(Model: DeLonghi HS20F, 230 [V], 50~60 [Hz]). Heat is 
produced by Joule effect and mainly transferred by 
convection and radiation. The heater has five heating levels 
correspond to the desired temperature ranges. A dial for 
selecting the level is manually controlled by users. It is 
connected to a bimetallic heat sensor. The sensor makes the 
heater switched on and off. The nominal power for heating 
is 1,000 [W]. The heater was placed in the well-insulated 
room during the whole period of the measurement. 

 
3.1.2. Well-insulated room 

 
The test room is located in the University of Cergy-

Pontoise, at Neuville, France. This room (size: 4 x 2.4 x 4 

 

Fig. 1. An overall structure of a simplified well-insulated 
building and an electric heater using thermal 
network 
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[m3]), of which wall is made up polyurethane and stainless 
steel sheet, is one of the well-insulated rooms in the site. It 
has a door (length: 0.9 [m], height: 1.9 [m]) with the same 
materials to the wall, and a small window (length: 0.3 [m], 
height: 0.5 [m]). The thermal characteristics of the room 
were already identified in ref. [3]. They are equal to: 
Rth=57.8 [mK/W], Cth=654 [kJ/K], and τth=3.78ⅹ104 [s]. 
The details of the room are also given in ref. [3]. 

 
3.1.3. Measured data 

 
The load profile Pelec(t) of the heater is acquired by NZR 

Standby-Energy-Monitor 16 (NZR SEM 16). This device 
measures and stores the following signatures of the 
electrical appliance: current, voltage, active power, energy 
consumption, energy costs, and maximal/minimal power 
during the measurement. For the temperature measurement, 
the room is equipped with a temperature acquisition device 
and twenty K-type thermocouples. The standard deviation 
of thermocouples is about 0.03 [K] at stable conditions. 
Two thermocouples are positioned beyond the electric 
heater for measuring Tap(t) during the test. Eighteen 
thermocouples are positioned for measuring Ti(t) and Te(t) 
and the details of the position of these thermocouples are 
described in [3]. Each quantity is measured each 60 [s] and 
stored into a host computer.  

The measurement was carried out during a week. Before 
starting the experiment, the heater was placed in the well-
insulated room in order to have the same initial 
temperatures between the heater and the room Tap(0)=Ti(0). 
During the first 72 [h] of the experiment, the heater is 
operating. Then it is off for rest of the experiment. An 
example of the measured data of Tap(t), Ti(t), and Te(t) is 
illustrated in Fig. 2. 

 
3.2. Description of parametric identification 

 
3.2.1. Parametric models 

 
Parametric models provide a compact form of a system 

using predefined polynomials, A1(q), B1(q), C1(q), D1(q), or 
F1(q) in the shift operator q. The general form of the 
models is as follows [15]. 

 

 1 1
1

1 1

( ) ( )
( ) ( ) ( ) ( )

( ) ( )

B q C q
A q y k x k e k

F q D q
= +   (3) 

 
where x, y are the input and the output of a system, 
respectively. e is the stochastic error. The error accounts for 
the zero mean white noise which has a normal distribution, 
a zero mean, and a constant covariance, or the disturbance 
of the system.  

The polynomials of the structure are defined as: 
 

 1 2
1 1 2( ) 1 a

a

n
nA q a q a q a q

−− −= + + + +⋯  (4) 

 1 2
1 0 1 2( ) b

b

n
nB q b b q b q b q

−− −= + + + +⋯  (5) 

 1 2
1 1 2( ) 1 c

c

n
nC q c q c q c q

−− −= + + + +⋯  (6) 

 1 2
1 1 2( ) 1 d

d

n
nD q d q d q d q

−− −= + + + +⋯  (7) 

 1 2
1 1 2( ) 1 f

f

n

nF q f q f q f q
−− −= + + + +⋯  (8) 

 
By selecting one or more polynomials, the different 

model structures are obtained including ARMA (Auto-
Regressive Moving Average) model, ARX (Auto-
Regressive with eXogenous input) model, ARMAX (Auto-
Regressive Moving Average with eXogenous input) model, 
BJ (Box-Jenkins) model, and OE (Output Error) model. 
Table 2 shows the different model structures and the 
selection of the polynomials.  

 
3.2.2. Least Square Estimation 

 
The parameters of the given models are obtained by least 

square estimation [15]. The criterion of least square 
estimation, JN is expressed as 

 

 [ ]
2

2

1 1

1 1
ˆ( ) ( , ) ( ) ( , )

N N

N

k k

J k y k y k
N N

θ ε θ θ
= =

= = −∑ ∑  (9) 

 
where N is the number of data, ε is the difference between 
measured data y and estimated data ŷ . θ is the parameter 
vector. The estimated data ŷ  is expressed as 
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295
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Time[hour]

T
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p
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a
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]

 

 

T
ap

T
i

T
e

 

Fig. 2. An example of the measured data of Tap(t), Ti(t), 
and Te(t) 

Table 2. The different model and the selection of the 
polynomials 

 A1 B1 C1 D1 F1 

ARMA √ √ - - 1 
ARX √ √ 1 1 1 

ARMAX √ √ √ 1 1 
BJ 1 √ 1 1 √ 
OE 1 √ √ √ √ 

1: fixed as 1, √ : chosen freely, -: no value 
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 ˆ( , ) ( )Ty k kθ ϕ θ=  (10) 
 

where φT(k) is the transition matrix of the regression vector. 
The optimal parameter vector ˆ

Nθ  of which criterion is 
minimized is then 

 

 ˆ arg min ( )N NJθ θ=  (11) 

 
3.2.3. Physical interpretation of the parameters 

 
The structure of the building system introduced in 

Section 2 is described in frequency domain (s-domain) 
using Laplace transformation. The transfer functions of the 
structure are expressed as 

 

( )
1

2

( )

( ) 1

ap th th ap th

elec ap th ap th ap ap th ap th th

R R C s R RT s

P s R R C C s R C R C R C s

+ +
=

+ + + +
 (12) 

( )
2

2

( )

( ) 1
th

elec ap th ap th ap ap th ap th th

RT s

P s R R C C s R C R C R C s
=

+ + + +  (13) 

 
where T1 is the difference between Tap and Ti, and that T2 is 
the difference between Ti and Te. It is supposed that the 
initial temperatures are the same (Tap(0)=Ti(0)=Te(0)). 
These functions can be represented in discrete-time domain 
by using Euler method. The structure is then expressed by 
using the shift operator q as follows: 

 

 

154

1 1 1

1 232

1 1
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( ) 1elec
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P q
q q

αα
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αα
α α

−

− −

+

=
+ +

  (14) 
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α
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α α
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where 

 
2

1 [( ) ]ap th ap th ap th ap ap th S SR R C C R R C R C T Tα = + + + +  

2 2 [( ) ]ap th ap th ap th ap ap th SR R C C R R C R C Tα = − − + +  

3 ap th ap thR R C Cα =  

2
4 ( )ap th th S ap th SR R C T R R Tα = + +  

5 ap th th SR R C Tα = −  
2

6 th SR Tα = −  

 
Eqs. (14-15) have the same structure with Eq. (3) which 

represents the general form of considering parametric 
models. Consequently, as comparing the parameters of 
their structures to each parametric model’ one, the relation 
between the physical parameters Rap, Cap, Rth, Cth and the 
coefficients of the parametric models is revealed. 
Regarding Tap and Ti, it yields the physical interpretation of 
the coefficients a1, a2, b0 and b1 as follows: 

 

2
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ap th th S
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b
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α
α

−
= =
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Accordingly, the parameters of the physically based 

model can be obtained as solving the above accordance 
after estimating the coefficients of the parametric models 
and can be directly applied to the proposed model of the 
considered building system. 

 
 

4. Case Study 

 
4.1. Different models 

 
The proposed identification procedure is applied to 

identify thermal parameters of a simplified well-insulated 
room and an electric heater. The used different parametric 
models in this work are ARMA, ARX, ARMAX, BJ, and OE 
models. The input of the models is Pelec. The output of the 
models is T1, which is the difference between Tap and Ti. 
These input and output data were measured during a week 
as mentioned in section 3.1.3. 

Table 3. The fitted parameters of parametric models 

 a1 a2 b0 b1 c1 c2 d1 d2 f1 f2 

ARMA -1.546 0.5692 0.0061 -0.0048 - - - - 1 1 

ARX -1.535 0.5356 0.0087 -0.0086 1 1 1 1 1 1 

ARMAX -1.519 0.5202 0.0091 -0.0090 -0.7962 -0.1921 1 1 1 1 

BJ 1 1 0.0091 -0.0090 1 1 1 1 -1.519 0.5202 

OE 1 1 0.0091 -0.0090 1.214 0.2638 0.4879 -0.3646 -1.519 0.5202 

- : no value 
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By using experimental results, the fitted parameters of 
each parametric model are obtained and detailed in Table 3. 
These parameters are matching to the thermal parameters 
of the introduced system of the simplified room and the 
electric heater. By the correspondence which is stated in 
Section 3.2.3, matching results of the models are calculated 
and listed in Table 4.  

The thermal parameters are only dependant on the plant 
process of each model. In other words, the parameters of 
the noise functions namely, c1, c2, d1, and d2 are not taken 
into the matching calculations. However, since the plant 
processes of ARMAX, BJ, and OE models are the same in 
this case, the obtained thermal parameters of the models 
are also identical. This result comes from that the 
amplitude of T1 is relatively much larger than the 
disturbances.  

From the obtained parameters, the dynamics of the 
structure can be known. Since the structure is modeled by 
2R2C, it has two time constants, τap and τth where 

 

 ap ap apR Cτ = ⋅  (16) 

 th th thR Cτ = ⋅  (17) 
 

Each time constant of the models are then calculated. 
The ratios of τap and τth of each parametric model (ARMA, 
ARX and ARMAX model) are respectively 0.14, 0.0022, 
and 0.0017. It shows that the thermal dynamics of the 
heater is much more rapid than the building’s one.  

 
4.2. Simulation results 

 
To validate the presented parameter identification 

method, the overall structure modeled by 2R2C was 
implemented in Matlab/Simulink® as shown in Fig. 3. The 
conditions of the simulation, such as the operation period 
of the electric heater, its power consumption and the 
outdoor temperature of the room, are the same to the 
experimental one. 

Under these conditions, the parameters obtained by 
ARMA, ARX, and ARMAX models were separately selected 
for the simulation. Since the thermal parameters of ARMAX, 
BJ, and OE are the same as shown in Table 4, we only took 
the values of ARMAX as the representative of ARMAX, BJ, 
and OE models. The temperature of the heater Tap and the 
heat flux from the heater Φap were simulated and compared 

to the measured data. 
The measured data and the simulation results of Tap with 

respect to the measured Pelec (Pelec exp) and the estimated 
heat fluxes of the heater Φap sim are illustrated in Figs. 4-5. 
As mentioned above, the system has two thermal dynamics. 
The first one is the dynamics of the heater and another one 
is the dynamics of the building. Because of the faster 
dynamics of the heater, Tap rapidly changes at the moment 
when the electric heater turns on and off. At the same time, 
there exists the heat which is charged and discharged in the 
heater. It is explained by the existence of the thermal 
capacity of the heater. Moreover, Tap globally rises until the 
building temperature arrives at steady-state due to the 
slower dynamics of the building. 

The comparisons of the results are also accomplished in 
both cases of transient and steady-states. During the 
transient state (see Fig. 4), Tap of ARMAX model is lower 
than the others because its time constant of the room is the 
biggest. It is known that it takes more time to reach to the 
steady-state if the time constant is bigger. On the same 
principle, Tap simulated by ARMA parameters rises much 
more rapidly than the others since the estimated time 
constant of the room by ARMA model is smaller. 

During steady-state (see Fig. 5), there is no big 
difference of Tap between ARX and ARMAX models. It is 
explained by the faster dynamics of the heater. τap 
calculated by ARX and ARMAX models are respectively 
70 and 64 [s]. From this, it is known that the duration 
while the heater is on (during about 6~8 [min]) is enough 
long to let Tap of these two models reach to the reference 
temperature. Moreover, Tap of ARMA model becomes 
more stable and follows better the experimental result 
during this state. However its rising and descending speeds 
are relatively slower than ARX and ARMAX models’, 
contrarily to the transient state. It is caused by τap of 
ARMA model. It is about twice of τap of ARX and ARMAX 
models. In addition, the value of Cth has no more effect 
to Tap at this state. The amplitude of Tap depends on the 
Rap, Cap, and Rth. 
 

Table 4. Identified thermal parameters of overall structure 

Electric heater model Simplified room model 
 Rap 

[mK/W] 
Cap 

[kJ/K] 
Rth 

[mK/W] 
Cth 

[kJ/K] 

ARMA 18.5 7.11 59.5 15.2 
ARX 18.8 3.71 57.2 547.2 

ARMAX 19.1 3.44 56.9 656.5 
BJ 19.1 3.44 56.9 656.6 
OE 19.1 3.44 56.9 656.6 

 

 

Fig. 3. Block diagram of the overall structure mplement-
ation in Matlab/ Simulink® 
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4.3 Evaluation of models 
 
To evaluate the models, the mean of the sum of absolute 

error (MAE) and the mean of the sum of square error 
(MSE) were used [16]: 
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k

MSE y k y k
N

=

= −∑  (19) 

 
These evaluation values of ARMA, ARX, and ARMAX 

models were calculated. The observed variable is Ti(t). The 
details of the results are listed in Table 5. 

As comparing each evaluation criterion, ARMA model 
has the worst performance. It is especially due to the over-
estimated Ti during transient-state. ARMA model does not 
consider any disturbance of the system and only searches 
the least squares error from the plant process. It tends to 
identify the parameters from the steady-state, of which 
duration is long. Hence, it leads an over-estimated τap and 
an under-estimated τth. On the contrary, ARX model and 
ARMAX model of which noise always exists on the systems 
are more realistic and better performed. Between two 
models, ARX model is more effective than ARMAX model 
which has the same plant process to BJ and OE models in 
this study. Moreover, the calculated total electrical energy 
consumption of the heater during the measurement period 
is 68.52 MJ. It was verified that the simulated total thermal 
energies of all models are identical to the electrical energy 
with 0.99 of the ratios. 

 
 

6. Conclusion 
 
This paper introduced a method to establish a low order 

model of a building system. The system includes a 
simplified well-insulated room and an electric heater. It 
was modeled by a second order lumped RC thermal 
network. Based on the model structure and the experimental 
results, the parameters of different linear parametric 
models (ARMA, ARX, ARMAX, BJ, and OE models) were 
obtained. The corresponding parameters of each parametric 
model were converted to the parameters of the physically 
based model. Finally, the designed models were imple-
mented in Matlab/Simulink® and were evaluated by MAE 
and MSE. As a result, the order of performance is as 
follows: ARMA < ARMAX, BJ, OE < ARX. The simulated 
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Fig. 4. Comparison of measured and estimated data in 
transient state (a) Tap, (b) Pelec and Φap 
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Fig. 5. Comparison of measured and estimated data in 
pseudo steady-state (a) Tap, (b) Pelec and Φap 

Table 5. Evaluation of models 

 MAE MSE 

ARMA 2.48 28.62 
ARX 0.85 2.02 

ARMAX 0.78 2.24 

 



Modeling of a Building System and its Parameter Identification 

 982 

thermal energy of each model was identical to the 
consumed electrical energy with 0.99 of the ratios.  

This study provided a low order model structure of a 
building system and its parameters. It contributes to predict 
thermal behavior and energy consumption of the building. 
Moreover, it permits a further study on the MPC control 
method adapting in the proposed model in order to reduce 
heating and cooling energy of the building.  
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