• Title/Summary/Keyword: Thermal Imaging Technology

Search Result 172, Processing Time 0.034 seconds

Synthesis and Characterization of Y2O3:Eu Fine Particle

  • Park, Ji-Koon;Kang, Sang-Sik;Kwak, Min-Gi;Choi, Seung-Suk;Kim, Jae-Hyung;Nam, Sang-Hee
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.4
    • /
    • pp.169-172
    • /
    • 2005
  • [ $Y_2O_3:Eu$ ] powder was synthesized using a solution-combustion method by dissolving $(CH_3CO_2)_3Y$ and $(CH_3CO_2)_3$ Eu in methyl-alcohol solution. Results from X-ray diffractometery (XRD), thermogravimetry (TG)-differential thermal analysis (DTA) show that $Y_2O_3:Eu$ crystallizes completely when the dry powder is sintered at $500^{\circ}C$. The investigated optical properties were the photoluminescence emission spectra, the excitation spectra and luminescence decay curve. Europium (Eu) concentration had no observable effect on the optical spectrum which depended on the emission intensity. The mean lifetime of synthesized phosphors was $2.3\~2.6 ms$.

Magnetic Resonance-Guided Focused Ultrasound in Neurosurgery: Taking Lessons from the Past to Inform the Future

  • Jung, Na Young;Chang, Jin Woo
    • Journal of Korean Medical Science
    • /
    • v.33 no.44
    • /
    • pp.279.1-279.16
    • /
    • 2018
  • Magnetic resonance-guided focused ultrasound (MRgFUS) is a new emerging neurosurgical procedure applied in a wide range of clinical fields. It can generate high-intensity energy at the focal zone in deep body areas without requiring incision of soft tissues. Although the effectiveness of the focused ultrasound technique had not been recognized because of the skull being a main barrier in the transmission of acoustic energy, the development of hemispheric distribution of ultrasound transducer phased arrays has solved this issue and enabled the performance of true transcranial procedures. Advanced imaging technologies such as magnetic resonance thermometry could enhance the safety of MRgFUS. The current clinical applications of MRgFUS in neurosurgery involve stereotactic ablative treatments for patients with essential tremor, Parkinson's disease, obsessive-compulsive disorder, major depressive disorder, or neuropathic pain. Other potential treatment candidates being examined in ongoing clinical trials include brain tumors, Alzheimer's disease, and epilepsy, based on MRgFUS abilities of thermal ablation and opening the blood-brain barrier. With the development of ultrasound technology to overcome the limitations, MRgFUS is gradually expanding the therapeutic field for intractable neurological disorders and serving as a trail for a promising future in noninvasive and safe neurosurgical care.

Signal Processor Design of Scanning Type Thermal Imaging System using IRFPA (주사방식 초점면 배열 열상장비의 신호처리기 설계)

  • Hong, S.M.;Yoon, E.S.;Yu, W.K.;Park, Y.C.;Lee, J.H.;Song, I.S.;Yum, Y.H.
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2600-2602
    • /
    • 2004
  • 열상장비는 물체가 방출하는 적외선 영역의 미약한 에너지를 검출하여 눈에 보이는 영상으로 변환하는 장비이다. 주간과 동일한 영상을 야간에도 획득할 수 있기 때문에 야간 감시등 군사용 장비로 활용되지만 최근에는 송전선로의 이상 유무 판단, 저장 탱크의 저장량 확인, 사스 환자의 체열 검색 등 산업계와 의료계의 이용도 증가하고 있다. 본 논문에서는 최신 기술인 주사방식 초점면 배열 열상장비의 아날로그 및 디지털신호처리기 설계와 제작 기술을 다룬다. $480{\times}6$ 배열의 고밀도 검출 소자를 이용하여 고속, 저잡음 신호처리를 함으로써 안정된 열 영상을 실시간으로 획득하였다.

  • PDF

The Detailed Design of the NISS onboard NEXTSat-1

  • Jeong, Woong-Seob;Park, Sung-Joon;Moon, Bongkon;Lee, Dae-Hee;Park, Won-Kee;Lee, Duk-Hang;Ko, Kyeongyeon;Pyo, Jeonghyun;Kim, Il-Joong;Park, Youngsik;Nam, Ukwon;Kim, Minjin;Ko, Jongwan;Im, Myungshin;Lee, Hyung Mok;Lee, Jeong-Eun;Shin, Goo-Hwan;Chae, Jangsoo;Matsumoto, Toshio
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.39.3-40
    • /
    • 2015
  • The NISS (Near-infrared Imaging Spectrometer for Star formation history) onboard NEXTSat-1 is the near-infrared instrument optimized to the first small satellite of NEXTSat series. The capability of both imaging and low spectral resolution spectroscopy in the near-infrared range is a unique function of the NISS. The major scientific mission is to study the cosmic star formation history in local and distant universe. For those purposes, the main targets are nearby galaxies, galaxy clusters, star-forming regions and low background regions. The off-axis optical design of the NISS with two linear variable filters is optimized to have a wide field of view ($2deg.{\times}2deg.$) as well as the wide wavelength range from 0.95 to $3.8{\mu}m$. The mechanical structure is considered to endure the launching condition as well as the space environment. The dewar inside the telescope is designed to operate the infrared detector at 80K stage. From the thermal analysis, we confirmed that the telescope and the dewar can be cooled down to around 200K and 80K, respectively in order to reduce the large amount of thermal noise. The stray light analysis is shown that a light outside a field of view can be reduced below 1%. After the fabrications of the parts of engineering qualification model (EQM), the NSS EQM was successfully assembled and integrated into the satellite. To verify operations of the satellite in space, the space environment tests such as the vibration, shock and thermal-vacuum test were performed. Here, we report the results of the critical design review for the NISS.

  • PDF

A Numerical Study on the Effect of Battery-pack Shape of Electric Vehicle on the Forced Convection Around Battery Cells (전기자동차 배터리 팩 형상이 배터리 셀 주위의 강제대류에 미치는 영향에 대한 수치해석)

  • Kim, Kyo Hyeon;Kim, Tae Wan;Woo, Man Gyeong;Jeon, Byoung Jin;Choi, Hyoung Gwon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.1
    • /
    • pp.16-21
    • /
    • 2017
  • In this paper, the effect of battery-package shape of electric vehicle on the forced convection around a group of battery cells has been numerically investigated. Simulations for the two package shapes with straight/curved ducts have been conducted to examine the two design factors; the maximum temperature and the temperature deviation of a group of cells which influence the cell durability. The simulation of the conjugate heat transfer has been simplified by employing an equivalent thermal conductivity of cell that consists of various materials. It has been found that the maximum temperature and the temperature deviation of curved duct were lower than those of straight duct. Velocity fields have also been examined to describe the temperature distribution of a group of cells and the position of maximum temperature was found to be related to the dead zone of flow field.

  • PDF

A semi-automated method for integrating textural and material data into as-built BIM using TIS

  • Zabin, Asem;Khalil, Baha;Ali, Tarig;Abdalla, Jamal A.;Elaksher, Ahmed
    • Advances in Computational Design
    • /
    • v.5 no.2
    • /
    • pp.127-146
    • /
    • 2020
  • Building Information Modeling (BIM) is increasingly used throughout the facility's life cycle for various applications, such as design, construction, facility management, and maintenance. For existing buildings, the geometry of as-built BIM is often constructed using dense, three dimensional (3D) point clouds data obtained with laser scanners. Traditionally, as-built BIM systems do not contain the material and textural information of the buildings' elements. This paper presents a semi-automatic method for generation of material and texture rich as-built BIM. The method captures and integrates material and textural information of building elements into as-built BIM using thermal infrared sensing (TIS). The proposed method uses TIS to capture thermal images of the interior walls of an existing building. These images are then processed to extract the interior walls using a segmentation algorithm. The digital numbers in the resulted images are then transformed into radiance values that represent the emitted thermal infrared radiation. Machine learning techniques are then applied to build a correlation between the radiance values and the material type in each image. The radiance values were used to extract textural information from the images. The extracted textural and material information are then robustly integrated into the as-built BIM providing the data needed for the assessment of building conditions in general including energy efficiency, among others.

On Orbit Data Analysis About the Passive Cooling of MIRIS, a Compact Space Infrared Telescope

  • Lee, Duk-Hang;Moon, Bongkon;Jeong, Woong-Seob;Pyo, Jeonghyun;Lee, Chol;Kim, Son-Goo;Park, Youngsik;Lee, Dae-Hee;Park, Sung-Joon;Kim, Il-Joong;Park, Won-Kee;Seon, Kwang-Il;Nam, Uk-Won;Cha, Sang-Mok;Park, Kwijong;Park, Jang-Hyun;Yuk, In-Soo;Ree, Chang Hee;Jin, Ho;Yang, Sun Choel;Park, Hong-Young;Shin, Ku-Whan;Suh, Jeong-Ki;Rhee, Seung-Wu;Park, Jong-Oh;Lee, Hyung Mok;Matsumoto, Toshio;Han, Wonyong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.50.1-50.1
    • /
    • 2014
  • The Multi-purpose InfraRed Imaging System (MIRIS) is the main payload of Science and Technology Satellite 3 (STSAT-3), which was launched onboard Dnepr rocket from Russian Yasny Launch Base in November 2013. The MIRIS is an infrared (IR) camera, and the telescope has to be cooled down to below 200K in order to reduce thermal background noise. For the effective cooling and low-power consumption, we applied passive cooling method to the thermal design of the MIRIS. We also conducted thermal analysis and tested for the passive cooling before the launch of STSAT-3. After the launch, we have received State-of-Health (SOH) data from the satellite on orbit, including temperature monitoring results. It is important that the temperature of the telescope was shown to be cooled down to below 200K. In this paper, we present both the temperature data of the MIRIS on orbit and the thermal analysis results in the laboratory. We also compare these results and discuss the verification of the passive cooling.

  • PDF

Identifying Process Capability Index for Electricity Distribution System through Thermal Image Analysis (열화상 이미지 분석을 통한 배전 설비 공정능력지수 감지 시스템 개발)

  • Lee, Hyung-Geun;Hong, Yong-Min;Kang, Sung-Woo
    • Journal of Korean Society for Quality Management
    • /
    • v.49 no.3
    • /
    • pp.327-340
    • /
    • 2021
  • Purpose: The purpose of this study is to propose a system predicting whether an electricity distribution system is abnormal by analyzing the temperature of the deteriorated system. Traditional electricity distribution system abnormality diagnosis was mainly limited to post-inspection. This research presents a remote monitoring system for detecting thermal images of the deteriorated electricity distribution system efficiently hereby providing safe and efficient abnormal diagnosis to electricians. Methods: In this study, an object detection algorithm (YOLOv5) is performed using 16,866 thermal images of electricity distribution systems provided by KEPCO(Korea Electric Power Corporation). Abnormality/Normality of the extracted system images from the algorithm are classified via the limit temperature. Each classification model, Random Forest, Support Vector Machine, XGBOOST is performed to explore 463,053 temperature datasets. The process capability index is employed to indicate the quality of the electricity distribution system. Results: This research performs case study with transformers representing the electricity distribution systems. The case study shows the following states: accuracy 100%, precision 100%, recall 100%, F1-score 100%. Also the case study shows the process capability index of the transformers with the following states: steady state 99.47%, caution state 0.16%, and risk state 0.37%. Conclusion: The sum of caution and risk state is 0.53%, which is higher than the actual failure rate. Also most transformer abnormalities can be detected through this monitoring system.

Counterfeit Detection Using Characterization of Safety Feature on Banknote with Full-field Optical Coherence Tomography

  • Choi, Woo-June;Min, Gi-Hyeon;Lee, Byeong-Ha;Eom, Jong-Hyun;Kim, Ju-Wan
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.316-320
    • /
    • 2010
  • We report an application of full-field optical coherence tomography (FF-OCT) for identifying counterfeit bank notes. The depth-resolved imaging capability of FF-OCT was used for tomographic identification of superficially-identical objects. By retrieving the internal structures of the security feature (cash hologram) of an original banknote, we could demonstrate the feasibility of FF-OCT to identify counterfeit money. The FF-OCT images showed that the hologram consisted of micron scale multi-coated layers including an air gap. Therefore, it is expected that FF-OCT has potential as a new non-invasive tool to discern imitation of currency, and it would find applications in a wide field of counterfeit sciences.

THERMAL ANALYSIS OF FIMS TDC AND LVPS ELECTRONIC BOARDS (원자외선 분광기 TDC 및 LVPS 전자보드의 열 해석)

  • Seon, K.I.;Yuk, I.S.;Nam, U.W.;Jin, H.;Park, J.H.;Rhee, J.G.;Ryu, K.S.;Lee, D.H.;Oh, H.S.;Kong, K.K.;Han, W.;Min, K.W.;Edelstein, J.;Korpela, E.
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.4
    • /
    • pp.283-292
    • /
    • 2002
  • Electronic boards of Far-ultraviolet IMaging Spectrograph (FIMS) should be designed to maintain their performances, and their temperatures should be remained within the allowed temperatures in operational environments. Thermal analysis at the electronic board level has been performed, and it is confirmed the electronics parts could be kept within their allowed temperature ranges.