• 제목/요약/키워드: Thermal Image Camera

Search Result 193, Processing Time 0.025 seconds

Analysis of Passive Cooling Effect of Membrane Shading Structure and the Tree by Field Observations in the Summer (하절기 복사환경 관측을 통한 수목과 일사차폐 막 구조물의 자연냉각효과)

  • Choi, Dong-Ho;Lee, Bu-Yong
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.4
    • /
    • pp.137-146
    • /
    • 2007
  • This study is about the passive cooling effects of three outdoor solar shading facilities as trees, pergola with wistaria vine and membrane shading structure, which are expected to provide cool spots in the summer. Field observations of measuring thermal environment of selected facilities is executed. Thermal environment measuring was categorized as short wave radiation, long wave radiation, net radiation, globe temperature, surface temperature measured by infrared camera. Heat transfer mechanism is analyzed with overall data from field measurement. Results from this study are as below; 1) Radiation balance measured on shaded surface under membrane shading structure was 17%($86W/m^2$) of the unshaded surface radiation balance($511W/m^2$). 2) Surface temperature comparison between vegetation and membrane of the shading structure is performed at 3 o'clock in the afternoon. Surface temperature of vegetation was same as air temperature and that of membrane was $5^{\circ}C$ higher than air temperature. Vegetation transpiration is considered as the causing factor which make those differences. 3) Results from this study could be used as fundamental data for reducing heat island phenomena and continuos research on this subject would be needed.

Heating Behavior of Silicon Carbide Fiber Mat under Microwave

  • Khishigbayar, Khos-Erdene;Seo, Jung-Min;Cho, Kwang-Youn
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.707-711
    • /
    • 2016
  • A small diameter of SiC fiber mat can produce much higher heat under microwave irradiation than the other types of SiC materials. Fabrication of high strength SiC fiber consists of iodine vapor curing on polycarbosilane precursor and heat treatment process. The curing stage of polycarbosilane fiber was maintained at $150-200^{\circ}C$ in a vacuum condition under the iodine vapor to fabricate a high thermal radiation SiC fiber. The structure and morphology of the fibers were characterized by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TG) and scanning electron microscopy (SEM). In this study, the thermal properties of SiC fiber mats under microwave have been analyzed with an IR thermal camera and its image analyzer. The prepared SiC fiber mats radiated high temperature with extremely high heating rate up to $1100^{\circ}C$ in 30 seconds. The fabricated SiC fiber mats were not oxidized after the heat radiation process under the microwave irradiation.

EPAR V2.0: AUTOMATED MONITORING AND VISUALIZATION OF POTENTIAL AREAS FOR BUILDING RETROFIT USING THERMAL CAMERAS AND COMPUTATIONAL FLUID DYNAMICS (CFD) MODELS

  • Youngjib Ham;Mani Golparvar-Fard
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.279-286
    • /
    • 2013
  • This paper introduces a new method for identification of building energy performance problems. The presented method is based on automated analysis and visualization of deviations between actual and expected energy performance of the building using EPAR (Energy Performance Augmented Reality) models. For generating EPAR models, during building inspections, energy auditors collect a large number of digital and thermal imagery using a consumer-level single thermal camera that has a built-in digital lens. Based on a pipeline of image-based 3D reconstruction algorithms built on GPU and multi-core CPU architecture, 3D geometrical and thermal point cloud models of the building under inspection are automatically generated and integrated. Then, the resulting actual 3D spatio-thermal model and the expected energy performance model simulated using computational fluid dynamics (CFD) analysis are superimposed within an augmented reality environment. Based on the resulting EPAR models which jointly visualize the actual and expected energy performance of the building under inspection, two new algorithms are introduced for quick and reliable identification of potential performance problems: 1) 3D thermal mesh modeling using k-d trees and nearest neighbor searching to automate calculation of temperature deviations; and 2) automated visualization of performance deviations using a metaphor based on traffic light colors. The proposed EPAR v2.0 modeling method is validated on several interior locations of a residential building and an instructional facility. Our empirical observations show that the automated energy performance analysis using EPAR models enables performance deviations to be rapidly and accurately identified. The visualization of performance deviations in 3D enables auditors to easily identify potential building performance problems. Rather than manually analyzing thermal imagery, auditors can focus on other important tasks such as evaluating possible remedial alternatives.

  • PDF

The Detection of the Internal Defect in the Glass Using Auto Focusing Method (자동 초점 기법을 이용한 유리 내부 결함 검출)

  • Jy, Yong-Woo;Jhang, Kyung-Young;Jung, Ji-Hwa;Kim, Suk-Jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.1047-1054
    • /
    • 2004
  • Internal defects in the glass, like-as micro-voids, micro-cracks, or inclusions, easily cause the failure when the glass is exposed to the shock or the thermal variation. In order to produce the highly reliable glass product, the precision inspection of the defect in the glass is required. For this purpose, this paper proposes a machine vision technique based on the auto-focusing method, which searches the defect and measures the location under the fact that the edge image of defect must be the most clear when the focal plane of CCD camera is coincided with the defect. As for the search index, the gradient indicator is presented. The basic principles are verified through the simulations for the computer-generated defect images, where the affects of defect shape, gray level of background, and the brightness of the defect image are also analyzed. Finally, experimental results for actual glass specimens are shown to confirm the applicability of this method to the actual field.

Effect of Acupuncture at the LU5(Reinforcement), LU10(Reduction) on the Pulsation Scale of Chon, Gwan and Chuk region using High Resolution Infrared Camera (척택.어제 침자가 고해상도 적외선 카메라로 관찰한 촌구맥 부위의 온도 Pulsation 변화에 미치는 영향 연구)

  • Na, Chang-Su;Jeon, Hyo-Sang;Kim, Jee-Hyun
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.2
    • /
    • pp.127-133
    • /
    • 2011
  • Arteria radialis is a branch of the brachial artery extending down the forearm around the wrist where it closes to skin surface. In the oriental medicine, the skin above arteria radialis has an important role because oriental medicine practitioners put their finger tips on the area, and diagnose patient's health conditions by feeling the pulsation of the arterial contraction. The finger tip diagnostic method relies on subjective decision of the practitioner; and there is a need to develop an objective diagnostic modality. The pulsation of the arterial contraction appears not only a movement on the site but also as temperature fluctuation due to pulsatile feeding of warmer blood. The goal of this study is to demonstrate a feasibility of using an infrared camera quantitatively to detect the temperature fluctuation on the skin. Clinical important three different areas, called chon, gwan, chuk, near a wrist where the arteria radialis reaches close to skin surface are marked with small pieces of surgical tape. A high-speed and high-resolution infrared camera with a 3 cm of field of view measures these areas for 10 second at 200 frames per second with a 320*240 pixel size. The pulsatile temperature fluctuation is calculated after passing a band pass filter to remove any stationary temperature over 10 second. The temperature fluctuation of a healthy male volunteer is measured at a room temperature as a control, and is compared with another measurement performed after 20 minutes staying in a room at a 40 degree Celsius. This comparison is repeated for three times, and indicates that the fluctuation increases after staying 20 minutes in the warm room. This increase becomes smaller when the person stays in the warm room with an acupuncture treatment that decreases body temperature. So that an objective diagnostics on the site may become feasible.

Study of the Internal Flow and Evaporation Characteristic Inside a Water Droplet on a Vertical Vibrating Hydrophobic Surface (수직 진동을 이용한 가열된 고체표면 위 증발하는 액적의 내부유동 제어연구)

  • Park, Chang-Seok;Lim, Hee-Chang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.1
    • /
    • pp.37-46
    • /
    • 2017
  • Thermal Marangoni flow has been observed inside droplets on heated surfaces, finally resulting in a coffee stain effect. This study aims to visualize and control the thermal Marangoni flow by employing periodic vertical vibration. The variations in the contact angle and internal volume of the droplet as it evaporates is observed by using a combination of continuous light and a still camera. With regard to the internal velocity, the particle image velocimetry system is applied to visualize the internal thermal Marangoni flow. In order to estimate the internal temperature gradient and surface tension on the surface of a droplet, the theoretical model based on the conduction and convection theory of heat transfer is applied. Thus, the internal velocity increases with an increase in plate temperature. The flow directions of the Marangoni and gravitational flows are opposite, and hence, it may be possible to control the coffee stain effect.

Thermal Imaging Fire Detection Algorithm with Minimal False Detection

  • Jeong, Soo-Young;Kim, Won-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.5
    • /
    • pp.2156-2170
    • /
    • 2020
  • This paper presents a fire detection algorithm with a minimal false detection rate, intended for a thermal imaging surveillance environment, whose properties vary depending on temporal conditions of day or night and environmental changes. This algorithm was designed to minimize the false detection alarm rate while ensuring a high detection rate, as required in fire detection applications. It was necessary to reduce false fire detections due to non-flame elements occurring when existing fixed threshold-based fire detection methods were applied. To this end, adaptive flame thresholds that varied depending on the characteristics of input images, as well as the center of gravity of the heat-source and hot-source regions, were analyzed in an attempt to minimize such non-flame elements in the phase of selecting flame candidate blocks. Also, to remove any false detection elements caused by camera shaking, one of the most frequently raised issues at outdoor sites, preliminary decision thresholds were adaptively set to the motion pixel ratio of input images to maximize the accuracy of the preliminary decision. Finally, in addition to the preliminary decision results, the texture correlation and intensity of the flame candidate blocks were averaged for a specific period of time and tested for their conformity with the fire decision conditions before making the final decision. To verify the fire detection performance of the proposed algorithm, a total of ten test videos were subjected to computer simulation. As a result, the fire detection accuracy of the proposed algorithm was determined to be 94.24%, with minimum false detection, demonstrating its improved performance and practicality compared to previous fixed threshold-based algorithms.

A Study of Analgesic Effect of Twirling Acupuncture on Pain Model of the Formalin Test Using the Infrared Thermal Image Processing (적외선 영상 처리를 통한 Formalin Test 통증 모델에서의 염전 침자극 효과에 대한 연구)

  • Ryu, Jae-kwan;Lee, Soon-geul;Rhim, Sung-soo;Lee, Jae-dong;Min, Byung-il;Ryu, Un-young
    • Journal of Acupuncture Research
    • /
    • v.21 no.2
    • /
    • pp.223-233
    • /
    • 2004
  • Objective: As a manual accupucture method, the twirling-needle treatment has been known more effective in relieving pain than the conventional simple accupuncture treatment. Finding a proper treatment condition is difficult because of the lack of a quantative measurement of the alleviation of pain made by acupuncture. In this research, the authors propose the use of infrared thermal images in a formalin test to quantatively verify the effect of twirling. Methods: After injecting 10%~20% formalin into the tail of rats, the infrared thermal images(ITI) have been obtained to estimate the thermal distribution caused by inflammation. The authors propose a processing method to measure the thermal distribution from the thermal images obtained from the infrared camera as a pain model of the formalin test. Results: The pain model obtained from the infrared thermal image has two phases. The first phase, which is a transient period, is the initial 20 minutes when the pain is developed after the formalin injection. The second phase, which is a steady state, is where the development of pain lasts for 60 minutes or more after the first stage. This characteristic of the proposed model based on ITI is consistent with that of the pain model reported by other researchers whose works are based on the time-course of flinching and licking/biting, following a different concentration of formalin. It is noticed that the response of the thermal distribution obtained from ITI shows very high correlation to the behavioral response in the formalin test performed by Kazuhiro Okuda and four others5). In addition, the authors propose an ITI method to determine the pain-reducing effect of the acupuncture. The thermal distribution obtained from the experiment shows that there is significant pain reducing effect made by the twirling-needle method.

  • PDF

A Real-time Surface Image Velocimeter by using a Thermal Camera and an Orientation Sensor (열영상카메라와 방향센서를 이용한 실시간 표면영상유속계)

  • Hwang, Jeong-Geun;Yu, Kwonkyu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.182-182
    • /
    • 2016
  • 표면영상유속계는 영상분석을 이용하여 홍수시 하천 수표면 유속을 측정하는 비접촉식 유속측정장치이다. 때문에 안전하고 편하게 홍수시 유속을 측정할 수 있으나, 실제 적용상 몇 가지 문제가 있다. 하나는 야간과 악천후에는 영상 촬영이 어렵다는 점이고, 다른 하나는 영상과 실세계와의 좌표변환을 위한 참조점 측량이 반드시 필요하다는 점이다. 본 연구에서는 열영상 카메라를 이용하여 첫 번째 문제를 해결하고, 방향센서(경사계)를 이용하여 두 번째 문제를 해결하여, 언제든지 유속측정이 가능한 실시간 표면영상유속계를 개발하였다. 열영상카메라는 별도의 조명장치없이도 주야간 영상 촬영이 가능하다. 또한 안개의 영향을 받지 않으며, 저유속시 생기는 수면파의 움직임도 잡아낼 수 있는 장점이 있다. 또한, 방향센서를 이용하여 참조점을 이용하지 않고, 좌표변환 관계를 구성할 수 있도록 카메라 모형(camera model)을 구성하였다. 이 카메라 모형에 필요한 외부 변수는 하천수표면과 카메라와의 높이 및 카메라의 두 가지 경사각뿐이다. 여기에 일반적인 카메라 보정에 이용하는 방법으로 구한 카메라 내부 변수를 결합하면 된다. 이렇게 개발한 열영상 표면영상유속계는 실험 수로와 하천 현장에 적용한 결과, 종전보다 훨씬 적용이 간편하며, 매우 높은 정확도로 유속을 측정할 수 있었다.

  • PDF

The Use of Haar Cascade Result selection algorithm to check Wearing Masks and Fever Abnormality (Haar Cascade 결괏값 선별 알고리즘을 통한 마스크 착용 여부와 발열 체크)

  • Kim, Eui-Jeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.2
    • /
    • pp.193-198
    • /
    • 2022
  • Recently, place that you need to check wearing mask and body temperature to prevent the proliferation of COVID-19 increased. But these things often measured by man manually or by machine one by one, result may be different by measuring ways, so it wastes workforce. Also, the machine generally just measures the highest temperature of the face, criteria for fever can't be trusted too. A bottleneck may occur due to crowding of people at the entrance, and because most of the measurement sites are at one entrance, it is inconvenient to track the movement of COVID-19 Confirmed cases. Thus, in this study, we intend to propose a method for suppressing the spread of infection by automatically classifying and displaying in real time using camera, thermal camera, Haar Cascade, and result selection algorithm.