DOI QR코드

DOI QR Code

Study of the Internal Flow and Evaporation Characteristic Inside a Water Droplet on a Vertical Vibrating Hydrophobic Surface

수직 진동을 이용한 가열된 고체표면 위 증발하는 액적의 내부유동 제어연구

  • Received : 2016.09.03
  • Accepted : 2016.11.09
  • Published : 2017.01.01

Abstract

Thermal Marangoni flow has been observed inside droplets on heated surfaces, finally resulting in a coffee stain effect. This study aims to visualize and control the thermal Marangoni flow by employing periodic vertical vibration. The variations in the contact angle and internal volume of the droplet as it evaporates is observed by using a combination of continuous light and a still camera. With regard to the internal velocity, the particle image velocimetry system is applied to visualize the internal thermal Marangoni flow. In order to estimate the internal temperature gradient and surface tension on the surface of a droplet, the theoretical model based on the conduction and convection theory of heat transfer is applied. Thus, the internal velocity increases with an increase in plate temperature. The flow directions of the Marangoni and gravitational flows are opposite, and hence, it may be possible to control the coffee stain effect.

가열된 표면에서의 액적은 일반적으로 내부에 마랑고니 유동이 발생하고, 이는 불균일한 침전물 패턴 형상을 구성하게 된다. 본 연구는 마랑고니 유동을 가시화하고, 수직진동을 사용해서 이를 제어하는 것을 주 목적으로 한다. 액적이 증발하는 동안, 액적의 접촉각 변화와 부피변화를 실험적으로 알 수 있었고, PIV(Particle Image Velocimetry) 실험 장치를 이용하여, 평판 온도별 마랑고니 유동의 내부 유동의 흐름을 가시화하였다. 그리고 평판에 각 주파수별 수직진동을 가해주는 실험을 진행하여, 그 결과 마랑고니 유동의 유동 방향과 수직진동의 유동 방향이 서로 반대인 것을 확인할 수 있었다. 마지막으로 증발하는 액적에 수직진동을 가해줌으로써, 액적의 하단부분에서 내부유동의 흐름변화를 관찰하였다. 마랑고니유동에 의해 발생하는 내부유동 방향과 수직진동으로 발생하는 내부유동의 방향이 서로 반대 방향이므로 가열된 평판에 진동을 가해주었을 때 액적 내부유동의 흐름이 변화가 발생하였고, 이는 곧 불균일한 침전물 패턴이 억제된 것을 증발 후 침전물의 패턴형상을 통해 확인할 수 있었다.

Keywords

References

  1. Scriven, L. E. and Sternling, C. V., 1960, "The Marangoni Effects," Nature, pp. 186-188.
  2. Xu, X. and Luo, J., 2007, "Marangoni Flow in an Evaporating Water Droplet," Applied Physics Letters, Vol. 91, No. 12, 124102. https://doi.org/10.1063/1.2789402
  3. Hu, H. and Larson, R. G., 2005, "Analysis of the Effects of Marangoni Stresses on the Microflow in an Evaporating Sessile Droplet," Langmuir, Vol. 21, No. 9, pp. 3972-3980. https://doi.org/10.1021/la0475270
  4. Hu, H. and Larson, R. G., 2006, "Marangoni Effect Reverses Coffee-ring Depositions," The Journal of Physical Chemistry B, Vol. 110, No. 14, pp. 7090-7094. https://doi.org/10.1021/jp0609232
  5. Girard, F., Antoni, M., Faure, S. and Steinchen, A., 2006, "Evaporation and Marangoni Driven Convection in Small Heated Water Droplets," Langmuir, Vol. 22, No. 26, pp. 11085-11091. https://doi.org/10.1021/la061572l
  6. Wang, H., Wang, Z., Huang, L., Mitra, A. and Yan, Y., 2001, "Surface Patterned Porous Films by Convection-assisted Dynamic Self-assembly of Zeolite Nanoparticles," Langmuir, Vol. 17, No. 9, pp. 2572-2574. https://doi.org/10.1021/la0102509
  7. Truskett, V. N. and Stebe, K. J., 2003, "Influence of Surfactants on an Evaporating Drop: Fluorescence Images and Particle Deposition Patterns," Langmuir, Vol. 19, No. 20, pp. 8271-8279. https://doi.org/10.1021/la030049t
  8. Ou Ramdane, O. and Quere, D., 1997, "Thickening Factor in Marangoni Coating," Langmuir, No. 13, No. 11, pp. 2911-2916. https://doi.org/10.1021/la961020a
  9. Singh, R. S., Grimes, C. A. and Dickey, E. C., 2002, "Fabrication of Nanoporous TiO2 Films Through Benard-Marangoni Convection," Material Research Innovations, 5(3-4), pp. 178-184. https://doi.org/10.1007/s10019-002-8643-5
  10. Schwabe, D., 1981, "Marangoni Effects in Crystal Growth Melts," PCH PHYS. CHEM. HYDRODYN., 2(4), pp. 263-280.
  11. Sirringhaus, H., Kawase, T., Friend, R. H., Shimoda, T., Inbasekaran, M., Wu, W. and Woo, E. P., 2000, "High-resolution Inkjet Printing of All-polymer Transistor Circuits," Science, 290 (5499), pp. 2123-2126. https://doi.org/10.1126/science.290.5499.2123
  12. Dugas, V., Broutin, J. and Souteyrand, E., 2005, "Droplet Evaporation Study Applied to DNA Chip Manufacturing," Langmuir, 21(20), pp. 9130-9136. https://doi.org/10.1021/la050764y
  13. Yun, S., Kang, K. H., Lim, G., Kim, T. and Lim, H., 2013, "Surfactant-Induced Suppression of the Thermo Capillary Flow in Evaporating Water Droplets," Trans. of the Korean Soc. of Mech. Eng B, Vol. 37, No. 7, pp. 695-701. https://doi.org/10.3795/KSME-B.2013.37.7.695
  14. Mampallil, D., Reboud, J., Wilson, R., Wylie, D., Klug, D. R. and Cooper, J. M., 2015, "Acoustic Suppression of the Coffee-ring Effect," Soft matter, Vol. 11, No. 36, pp. 7207-7213. https://doi.org/10.1039/C5SM01196E
  15. Kim, H. and Lim, H. C., 2015, "Mode Pattern of Internal Flow in a Water Droplet on a Vibrating Hydrophobic Surface," The Journal of Physical Chemistry B, Vol. 119, No. 22, pp. 6740-6746. https://doi.org/10.1021/acs.jpcb.5b02975
  16. Frank, P. I. and David, P. D., 1996, Fundamentals of Heat and Mass Transfer. School of Mechanical Engineering, 4, p. 306.
  17. Girard, F., Antoni, M., Faure, S. and Steinchen, A., 2008, "Influence of Heating Temperature and Relative Humidity in the Evaporation of Pinned Droplets," Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 323, No. 1, pp. 36-49. https://doi.org/10.1016/j.colsurfa.2007.12.022
  18. Oh, J. M., Ko, S. H. and Kang, K. H., 2008, "Shape Oscillation of a Drop in ac Electrowetting," Langmuir, Vol. 24, No. 15, pp. 8379-8386. https://doi.org/10.1021/la8007359
  19. Mack, G. L., 1936, "The Determination of Contact Angles from Measurements of the Dimensions of Small Bubbles and Drops. I. The Spheroidal Segment Method for Acute Angles," The Journal of Physical Chemistry, Vol. 40, No. 2, pp. 159-167. https://doi.org/10.1021/j150371a001
  20. Kang, K. H., Lee, S. J., Lee, C. M. and Kang, I. S., 2004, "Quantitative Visualization of Flow Inside an Evaporating Droplet using the Ray Tracing Method," Measurement Science and Technology, Vol. 15, No. 6, p. 1104. https://doi.org/10.1088/0957-0233/15/6/009
  21. Tam, D., von ARNIM, V. O. L. K. M. A. R., McKinley, G. H. and Hosoi, A. E., 2009, "Marangoni Convection in Droplets on Superhydrophobic Surfaces," Journal of Fluid Mechanics, 624, pp. 101-123. https://doi.org/10.1017/S0022112008005053
  22. Marmottant, P. and Hilgenfeldt, S., 2003, "Controlled Vesicle Deformation and Lysis by Single Oscillating Bubbles," Nature, Vol. 423, No. 6936, pp. 153-156. https://doi.org/10.1038/nature01613
  23. McHale, G., Elliott, S. J., Newton, M. I., Herbertson, D. L. and Esmer, K., 2008, "Levitationfree Vibrated Droplets: Resonant Oscillations of Liquid Marbles," Langmuir, Vol. 25, No. 1, pp. 529-533. https://doi.org/10.1021/la803016f
  24. Matsumoto, T., Fujii, H., Ueda, T., Kamai, M. and Nogi, K., 2005, "Measurement of Surface Tension of Molten Copper using the Free-fall Oscillating Drop Metho," Measurement Science and Technology, Vol. 16, No. 2, p. 432. https://doi.org/10.1088/0957-0233/16/2/014
  25. Young, T., 1805, "An Essay on the Cohesion of Fluids," Philosophical Transactions of the Royal Society of London, 95, pp. 65-87. https://doi.org/10.1098/rstl.1805.0005
  26. Oh, J. M., Legendre, D. and Mugele, F., 2012, "Shaken Not Stirred-On Internal Flow Patterns in Oscillating Sessile Drops," EPL (Europhysics Letters), Vol. 98, No. 3, 34003. https://doi.org/10.1209/0295-5075/98/34003
  27. Brunet, P., Eggers, J. and Deegan, R. D., 2007, "Vibration-induced Climbing of Drops," Physical Review Letters, Vol. 99, No. 14, 144501. https://doi.org/10.1103/PhysRevLett.99.144501