• Title/Summary/Keyword: Thermal Hydraulic

Search Result 796, Processing Time 0.022 seconds

Measurement of Properties of Domestic Bentonite for a Buffer of an HLW Repository (고준위폐기물 처분장의 완충재용 국내산 벤토나이트의 특성 측정)

  • Yoo, MalGoBalGaeBitNaLa;Choi, Heui-ju;Lee, Min-soo;Lee, Seung-yeop
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.2
    • /
    • pp.135-147
    • /
    • 2016
  • The buffer in geological disposal system is one of the major elements to restrain the release of radionuclide and to protect the container from the inflow of groundwater. The buffer material requires long-term stability, low hydraulic conductivity, low organic content, high retardation of radionuclide, high swelling pressure, and high thermal conductivity. These requirements could be determined by the quantitative analysis results. In case of South Korea, the bentonites produced in Gyeongju area have been regarded as candidate buffer/backfill materials at KAERI (Korea Atomic Energy Research Institute) since 1997. According to the study on several physical and chemical characteristics of domestic bentonite in the same district, this is the Ca-type bentonite with about 65% of montmorillonite content. Through this study, we present the criteria for the performance evaluation items and methods when collecting new buffer/backfill materials.

Feasibility Study on the Use of CFBC Ash as Non-sintered Binder (순환유동층 보일러애시를 활용한 비소성 결합재로써의 활용 가능성 검토)

  • Kang, Yong Hak;Lim, Gwi Hwan;Kim, Sang Jun;Choi, Young Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.5
    • /
    • pp.119-126
    • /
    • 2018
  • Recently, the production of circulating fluidized bed combustion ash has been increased in thermal power plants. The addition of limestone for the desulfurizing effect of circulating fluidized bed boiler ash increases the content of CaO and $SO_3$ contained in ash, which is higher than the free fly ash in general fly ash. Unlike conventional fly ash, the circulating fluidized bed combustion ash has a high reactivity when it comes into contact with water due to its hydraulic properties and high free-CaO content. The aim of this study is to investigate the possibility of non-sintered binder by using self-cementing properties of circulating fluidized bed combustion ash. The mechanical and hydration characteristics were investigated according to the content of CFBC ash. In addition, the effects of gymsum type and content on the compressive strength and micro-structure of non-sintered binder pastes.

Pressure Loss Analysis of the 75 kW MCFC Stack with Internal Manifold Separator (75 kW 용융탄산염 연료전지 (MCFC) 스택 내 압력 손실 해석)

  • Kim, Beom-Joo;Lee, Jung-Hyun;Kim, Do-Hyeong;Kang, Seung-Won;Lim, Hee-Chun
    • Journal of Hydrogen and New Energy
    • /
    • v.19 no.5
    • /
    • pp.367-376
    • /
    • 2008
  • To obtain the data of the pressure loss and differential pressure at the inside of the stack that was composed of 126 cells with 7,500 cm2 electrode area, 75kW molten carbonate fuel cell system has been operated. Computational fluid dynamics was applied to estimate reactions and thermal fluid behavior inside of the stack that was adopted with internal manifold type separator. The pressure loss coefficient K showed 72.29 to 84.01 in anode and 6.34 to 8.75 in cathode at low part of cells at the inside of 75 kW MCFC stack respectively. Meanwhile, the pressure loss coefficient of the higher part of cells at the interior of the stack showed 15.36 and 56.44 in anode and cathode respectively. These results mean that there is no big total pressure difference between anode and cathode at the inner part of 75 kW MCFC stack. This result will be reflected in 250kW MCFC system design.

IDENTIFICATION OF TWO-DIMENSIONAL VOID PROFILE IN A LARGE SLAB GEOMETRY USING AN IMPEDANCE MEASUREMENT METHOD

  • Euh, D.J.;Kim, S.;Kim, B.D.;Park, W.M.;Kim, K.D.;Bae, J.H.;Lee, J.Y.;Yun, B.J.
    • Nuclear Engineering and Technology
    • /
    • v.45 no.5
    • /
    • pp.613-624
    • /
    • 2013
  • Multi-dimensional two-phase phenomena occur in many industrial applications, particularly in a nuclear reactor during steady operation or a transient period. Appropriate modeling of complicated behavior induced by a multi-dimensional flow is important for the reactor safety analysis results. SPACE, a safety analysis code for thermal hydraulic systems which is currently being developed, was designed to have the capacity of multi-dimensional two-phase thermo-dynamic phenomena induced in the various phases of a nuclear system. To validate the performance of SPACE, a two-dimensional two-phase flow test was performed with slab geometry of the test section having a scale of $1.43m{\times}1.43m{\times}0.11m$. The test section has three inlet and three outlet nozzles on the bottom and top gap walls, respectively, and two outlet nozzles installed directly on the surface of the slab. Various kinds of two-dimensional air/water flows were simulated by selecting combinations of the inlet and outlet nozzles. In this study, two-dimensional two-phase void fraction profiles were quantified by measuring the local gap impedance at 225 points. The flow conditions cover various flow regimes by controlling the flow rate at the inlet boundary. For each selected inlet and outlet nozzle combination, the water flow rate ranged from 2 to 20 kg/s, and the air flow rate ranged from 2.0 to 20 g/s, which corresponds to 0.4 to 4 m/s and 0.2 to 2.3 m/s of the superficial liquid and gas velocities based on the inlet port area, respectively.

CANDU-6 Heat Transport System Stability Analysis With Canflex Fuel Bundle (CANFLEX 핵연료를 사용한 CANDU-6의 열수송계통 안정성 분석)

  • Shin, Jung-Cheol;Park, Ju-Hwan;Kim, Tae-Han;Suk, Ho-Chun
    • Nuclear Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.358-373
    • /
    • 1995
  • The Heat Transport system loop stability of CANDU-6 reactor using the CANFLEX fuel bundle was studied. The Thermal-hydraulic behavior of CANFLEX fuel bundle is similar to the conventional 37-element fuel bundle since the reactor power and the frictional pressure drop through the fuel channel is almost the same each other, Mounter the CANFLEX fuel bundle gives higher critical channel power and more homogeneous enthalpy distributions in the subchannels than 37-element fuel bundle. The SOPHT modelling or the CANFLEX fuel bundle and the Reactor outlet Header(ROH) interconnection line was made and the stability analysis response of Wolsong-1 reactor with CANFLEX fuel bundle was obtained. Without the ROH interconnection line the Heat Transport system loop using 43-element fuel bundle is unstable like the current 37-element fuel bundle. With the ROH interconnection line, however, the Heat Transport system is stable within $\pm$1% of nominal flow. In the Heat Transport system loop stability point of view for Wolsong-1 plant therefore, the CANFLEX fuel loading is considered to be acceptable.

  • PDF

Effects of Discrete Rib-Turbulators on Heat/Mass Transfer Augmentation in a Rectangular Duct (사각 덕트 내부 열전달 향상을 위한 요철의 단락 효과)

  • Kwon, Hyuk-Jin;Wu, Seong-Je;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.5
    • /
    • pp.744-752
    • /
    • 2000
  • The influence of arrangement and length of discrete ribs on heat/mass transfer and friction loss is investigated. Mass transfer experiments are conducted to obtain the detailed local heat/mass transfer information on the ribbed wall. The aspect ratio (width/height) of the duct is 2.04 and the rib height is one tenth of the duct height, such that the ratio of the rib height to hydraulic diameter is 0.0743. The ratio of rib-to-rib distance to rib height is 10. The discrete ribs were made by dividing each continuous rib into 2, 3 or 5 pieces and attached periodically to the top and the bottom walls of the duct with a parallel orientation The combined effects of rib angle and length of the discrete ribs on heat/mass transfer ae considered for the rib angles $({\alpha})\;of\;90^{\circ}\;and\;45^{\circ}$. As the number of the discrete ribs increases, the uniformity of the heat/mass transfer distributions increases. For $(\alpha})=90^{\circ}$, the heat/mass transfer enhancement with the discrete ribs is remarkable, while the heat/mass transfer performances are slightly higher than that of the transverse continuous ribs due to the accompanied high friction loss penalty. For $(\alpha})=90^{\circ}$, the average heat/mass transfer coefficients and the heat/mass transfer performances decrease slightly with the discrete ribs compared to the case of the angled continuous ribs.

Numerical Study of Low-pressure Subcooled Flow Boiling in Vertical Channels Using the Heat Partitioning Model (열분배모델을 이용한 수직유로에서의 저압 미포화비등 해석)

  • Lee, Ba-Ro;Lee, Yeon-Gun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.7
    • /
    • pp.457-470
    • /
    • 2016
  • Most CFD codes, that mainly adopt the heat partitioning model as the wall boiling model, have shown low accuracies in predicting the two-phase flow parameters of subcooled boiling phenomena under low pressure conditions. In this study, a number of subcooled boiling experiments in vertical channels were analyzed using a thermal-hydraulic component code, CUPID. The prediction of the void fraction distribution using the CUPID code agreed well with experimental data at high-pressure conditions; whereas at low-pressure conditions, the predicted void fraction deviated considerably from measured ones. Sensitivity tests were performed on the submodels for major parameters in the heat partitioning model to find the optimized sets of empirical correlations suitable for low-pressure subcooled flow boiling. The effect of the K-factor on the void fraction distribution was also evaluated.

A Coupled Moisture and Bent Flow Analysis Model in Unsaturated Soil (불포화토에서의 복합적 습기와 열흐름의 분석모델)

  • Kim, Suk-Nam;Kim, Suk-Nam
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.67-72
    • /
    • 2002
  • Water content of soils within pavement varies seasonally depending on climatic factors such as rainfall, temperature and so on, since a hydraulic gradient due to rainfall causes moisture flow, and a thermal gradient due to temperature change induces not only heat flow but also moisture flow directly and indirectly. Soils within pavement are usually in an unsaturated state, and heat flow and moisture flow have been recognized as coupled processes with complex interactions between them. This paper presents a one-dimensional analysis model by the finite element method for the coupled heat flow and moisture flow in unsaturated soils. The model can be used to predict not only the change of temperature and water content, but also frist heave with time. It will be a meaningful work for the design and maintenance of pavement to predict the change of the temperature and water content and frist heave. The model is tested through comparisons with the results by other models.

Validation of Performance of Engineered Barriers in a Geological Repository: Review of In-Situ Experimental Approach (심지층처분장 공학적방벽 성능 실증: 현장실험적 접근법 검토)

  • Cho, Won-Jin;Kim, Geon Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.2
    • /
    • pp.137-164
    • /
    • 2018
  • The guarantee of the performance of the engineered barriers in a geological repository is very important for the long-term safety of disposal as well as the efficient design of the repository. Therefore, the performance of the engineered barriers under repository condition should be demonstrated by in-situ experiments conducted in an underground research laboratory. This article provides a review of the major in-situ experiments that have been carried out over the past several decades at underground research laboratories around the world to validate the performance of engineered barriers of a repository, as well as their results. In-situ experiments to study the coupled thermal-hydraulic-mechanical behavior of the engineered barrier system used to simulate the post-closure performance of the repository are analyzed as a priority. In addition, in-situ experiments to investigate the performance of the buffer material under a real repository environment have been reviewed. State-of-the art in-situ validations of the buffer-concrete interaction, and the installation of the buffer, backfill and plug, as well as characterization of the near-field rock and the corrosion of the canister materials are, also performed.

Gravity-Injection Core Cooling After a Loss-of-SDC Event n the YGN Units 3 & 4

  • Seul, Kwang-Woo;Bang, Young-Seok;Kim, Hho-Jung
    • Nuclear Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.476-485
    • /
    • 1999
  • In order to evaluate the gravity-injection capability to maintain core cooling after a loss-of-shutdown-cooling event during shutdown operation, the plant conditions of the Yong Gwang Units 3&4 were reviewed. The six cases of possible gravity-injection paths from the refueling water tank (RWT) were identified and the thermal-hydraulic analyses were performed using the RELAP5/MOD3.2 code. The core cooling capability was significantly dependent on the gravity-injection path, the RCS opening, and the injection rate. In the cases with the pressurizer manway opening higher than the RWT water level, the coolant was held up in the pressurizer and the system pressure continued increasing after gravity-injection. The gravity injection eventually stopped due to the high system pressure and the core was uncovered. In the cases with the injection path and opening on the same leg side, the core cooling was dependent on whether the water injected from the RWT passed the core region or not. However, in the cases with the injection path and opening on the different leg side, the system was well depressurized after gravity-injection and the core boiling was successfully prevented for a long-term transient. In addition, from the sensitivity study on the gravity-injection flow rate, it was found that about 54 kg/s of injection rate was required to maintain the core cooling and the core cooling could be provided for about 10.6 hours after event with that injection rate from the RWT. Those analysis results would provide useful information to operators coping with the event.

  • PDF