• 제목/요약/키워드: Thermal Environments

검색결과 498건 처리시간 0.026초

천장 카세트형 냉·난방기에 의해 형성되는 학교 교실의 실내 열환경 및 공기환경의 개선에 대한 연구 (A Study on the Improvement of Indoor Thermal and Air Environment Made by Ceiling Cassette Type Cooling and Heating Unit in Classrooms)

  • 장현재;이하영
    • 한국태양에너지학회 논문집
    • /
    • 제32권6호
    • /
    • pp.141-148
    • /
    • 2012
  • Ceiling cassette type air conditioner has been a main stream as a heating/cooling system recently in school, Korea. In this study, indoor thermal environments made by ceiling cassette type air conditioner were investigated by CFD simulation. Concentrations of $CO_2$ were investigated by a field measurement. Indoor thermal environment with the velocity inlet angle of $45^{\circ}$ from the ceiling in heating season was very ununiform so that thermal area was divided into two parts those the one is window side which is cold, and the other is corridor side which is hot. In cooling season under the same condition, there are areas too hot or too cold. If the velocity inlet angle is set in $30^{\circ}$ from the ceiling, indoor thermal environments was improved greatly in cooling season and heating season, too. Also, from the field measurement of $CO_2$ concentrations, it was suggested to install ventilators with proper air volume considered the number of class students.

초소형위성 HAUSAT-1의 기계시스템 설계 및 개발 (Mechanical System Design and Development of the HAUSAT-1 Picosatellite)

  • 황기룡;민명일;문병영;장영근
    • 한국항공우주학회지
    • /
    • 제32권9호
    • /
    • pp.103-113
    • /
    • 2004
  • 위성은 조립 및 시험 완료 후 운반 및 발사 순간부터 임무 궤도로 진입할 때까지 발사체에 의한 정하중, 동하중 및 충격하중을 겪게 되며, 임무궤도에서 열진공, 복사 및 미세중력 환경하에 놓이게 되어 위성의 설계, 제작, 조립 및 시험 시 이들 발사환경과 우주환경을 고려하여 개발을 수행하여야 한다. 본 논문에서는 HAUSAT-1 피코위성의 구조 열해석과 설계 결과를 논의하고, 발사 과정과 우주에서 겪게 되는 환경을 모사한 발사환경 및 우주환경시험의 결과를 논의한다. HAUSAT-1 위성의 기계시스템은 인증 수준의 진동시험과 열진공시험 후에도 안정하다는 것을 확인하였다.

적응제어방식 성능비교를 위한 실험실용 프로세스의 제작 및 실험 (Manufacture and experiments of thermal process for comparative study of adaptive control)

  • 주성준;공재섭;박용식;김영철;양홍석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.333-338
    • /
    • 1990
  • Most verification of improvements for adaptive control schemes are. dependent on computer simulations, but these computer simulations have much limitation, because (if complex actual conditions of system. This paper is concerned with the constructions of a thermal process system for experiments with various control schemes. This thermal process system is composed of a water tank, PC-XT, AD/DA converters power supply and thermal sensors. We estimate. the algorithms of pole-assignment adaptive control in the manifold disturbances and environments, changing system dynamics. The system equations for thermal press are included.

  • PDF

Selective Catalytic Reduction (SCR) 환경에서 18% 크롬 스테인리스강의 부식 거동 (Corrosion behaviors of 18Cr Stainless Steels in Selective Catalytic Reduction Environments)

  • 김희산
    • Corrosion Science and Technology
    • /
    • 제22권3호
    • /
    • pp.175-186
    • /
    • 2023
  • Effects of high-temperature environment and low-temperature environment on corrosion behaviours of 18Cr stainless steels (type 304L, type 441) in simulated selective catalytic reduction (SCR) environments were studied using weight loss test in each environment and rust analysis. With time to exposure to the high-temperature environment, type 441 was more resistant to corrosion than type 304L due to both higher diffusivity of Cr and lower thermal expansion coefficient in α-iron. The former provides a stable protective Cr2O3 layer. The latter leaded to low residual stress between scale and steel, reducing the spallation of the scale. With time to exposure to the low-temperature environment, on the other hand, type 304L was more resistant to corrosion than type 441. The lower resistance of type 441 was caused by Cr-depleted zone with less than 11% formed during the pre-exposure to a high-temperature environment, unlike type 304L. It was confirmed by results from the crevice corrosion test of sensitised 11Cr steel. Hence, to achieve higher corrosion resistance in simulated SCR environments, ferritic stainless steels having lower thermal expansion coefficient and higher diffusivity of Cr but containing more than 18% Cr are recommended.

흡착포집 및 열탈착/GC 분석에 의한 공기 중 휘발성 유기화합물의 측정방법론 평가 (Evaluation of Methodology for the Measurement of VOCs in the Air by Adsorbent Sampling and Thermal Desorption with GC Analysis)

  • 백성옥;황승만;박상곤;전선주;김병주;허귀석
    • 한국대기환경학회지
    • /
    • 제15권2호
    • /
    • pp.121-138
    • /
    • 1999
  • This study was carried out to evaluate the performance of a sampling and analytical methodology for the measurement of selected volatile organic compounds (VOCs) in the ambient air. VOCs were determined by the adsorbent tube sampling and automatic thermal desorption coupled with GC/FID and GC/MSD analysis. Target analytes were aromatic VOCs, including BTEX, 1,3,5-and 1,2,4,-trimethylbenzenes(TMBs), and naphthalene. The methodology was investigatedwith a wide range of performance criteria such as repeatability, linearity, lower detection limits, collection efficiency, thermal conditioning, breakthrough volume and calibration methods using internal and external standards. standards. Stability of samples collected on adsorbent tubes during storage was also investigated. In addition, the sampling and analytical method developed during this study was applied to real samples duplicately collected in various indoor and outdoor environments. Precisions for the duplicate samples and distributed volume samples appeared to be well comparable with the performance criteria recommended by USEPA TO-17. The audit accuracy was estimated by inter-lab comparison of both duplicate samples and standard materials between the two independent labs. The overall precision and accuracy of the method were estimated to be within 30% for major aromatic VOCs such as BTEX. This study demonstrated that the adsorbent sampling and thermal desorption method can be reliably applied for the measurement of BTEX in ppb levels frequently occurred in common indoor and ambient environments.

  • PDF

머플러용 스테인리스강의 내식성에 미치는 열적 산화의 영향 (Effects of Thermal Oxidation on Corrosion Resistance of Stainless Steels for Muffler Materials)

  • 김동우;김희산
    • 대한금속재료학회지
    • /
    • 제46권10호
    • /
    • pp.652-661
    • /
    • 2008
  • Reduction of NOx in emission gas, improvement of engine efficiency, and extension of warranty period has made demands for developing materials more corrosively resistant to the inner-muffler environments or predicting the lifetime of materials used in muffler more precisely. The corrosion inside muffler has been explained with condensate corrosion mainly though thermal oxidation experiences prior to condensate corrosion. Hence, the aim of this study is to describe how the thermal oxidation affects the corrosion of stainless steel exposed to the inner-muffler environments. Auger electron spectroscopy and electrochemical tests were employed to analyze oxide scale and to evaluate corrosion resistance, respectively. Thermal oxidation has different role of condensate corrosion depending on the temperature: inhibiting condensate corrosion below $380^{\circ}C$ and enhancing condensate corrosion above $380^{\circ}C$. The low temperature oxidation causes to form compact oxide layer functioning a barrier for penetrating condensate into a matrix. Although though thermal oxidation caused chromium-depleted layer between oxide layer and matrix, the enhancement of the condensate corrosion in high temperature oxidation resulted from corrosion-induced crevice formed by oxide scale rather than corrosion in chromium-depleted layer. It was proved by aids of anodic polarization tests and measurements of pitting corrosion potentials. By the study, the role of high temperature oxidation layer affecting the condensate corrosion of stainless steels used as muffler materials was well understood.

전통온돌방의 실내온열환경 및 온열감에 관한 연구 (Evaluation of Indoor Thermal Environment and Thermal Sensation in Traditional Ondol Room)

  • 김난행;손장열
    • 한국주거학회논문집
    • /
    • 제15권2호
    • /
    • pp.19-25
    • /
    • 2004
  • The aim of the research was to evaluate the characteristics of indoor thermal environment and thermal sensation in the traditional Ondol room. Indoor thermal factors including air temperature, operative temperature, floor surface temperature, relative humidity, PMV, OT were measured, and survey was carried out to understand subjective responses of resident's related to indoor thermal environment in Ondol room. The analysed houses are: the Chung hyo dang(the head house of Ryu family in Andong) and the Pyeung won jung(the traditional house in Yesan). The purpose of the survey was to know the relationship between resident's sensation and thermal environmental indicators such as air temperature, relative humidity, floor surface temperature, OT. The experimental results have pointed out how Ondol room may lead to comfortable and uniform indoor thermal environments.

국내 대기 중 독성 휘발성 유기화합물의 오염 특성(I) - 측정 방법론 평가 - (Characteristics of Atmospheric Concentrations of Toxic Volatile Organic Compounds in Korea ( I ) - Evaluation of Sampling and Analytical Methodology)

  • 백성옥;김미현;김수현;박상곤
    • Environmental Analysis Health and Toxicology
    • /
    • 제17권2호
    • /
    • pp.95-107
    • /
    • 2002
  • This study was designed to investigate the characteristics of atmospheric concentrations of toxic volatile organic compounds (VOCs) in Korea. Target compounds included 1,3-butadiene, aromatics such as BTEX, and a number of carbonyl compounds. In this paper, as the first part of the study, the performance of sampling and analytical methods was evaluated for the measurement of selected VOCs and carbonyl compounds in the ambient air. VOCs were determined by the adsorbent tube sampling and automatic thermal desorption coupled with GC/MSD analysis, while carbonyls by the DNPH-silica cartridge sampling with HPLC analysis. The methodology was investigated with a wide range of performance criteria such as repeatability, linearity. lower detection limits, collection efficiency, thermal conditioning, breakthrough volume and calibration methods using internal standards. In addition, the sampling and analytical methods established in this study were applied to real field samples duplicately collected in various ambient environments. Precisions for the duplicate samples appeared to be comparable with the performance criteria recommended by USEPA TO-17. The overall precision of the sampling and analytical methods was estimated to be within 20 ∼ 30% for major aromatic VOCs such as BTEX, whereas the precision for major carbonyl compounds such as formaldehyde and acetaldehyde was within 10 ∼ 20% for field samples. This study demonstrated that the adsorbent sampling and thermal desorption method can be reliably applied for the measurement of BTEX in ppb levels frequently occurred in common indoor and ambient environments.

Vibration characteristics of functionally graded carbon nanotube-reinforced composite double-beams in thermal environments

  • Zhao, Jing-Lei;Chen, Xu;She, Gui-Lin;Jing, Yan;Bai, Ru-Qing;Yi, Jin;Pu, Hua-Yan;Luo, Jun
    • Steel and Composite Structures
    • /
    • 제43권6호
    • /
    • pp.797-808
    • /
    • 2022
  • This paper presents an investigation on the free vibration characteristics of functionally graded nanocomposite double-beams reinforced by single-walled carbon nanotubes (SWCNTs). The double-beams coupled by an interlayer spring, resting on the elastic foundation with a linear layer and shear layer, and is simply supported in thermal environments. The SWCNTs gradient distributed in the thickness direction of the beam forms different reinforcement patterns. The materials properties of the functionally graded carbon nanotube-reinforced composites (FG-CNTRC) are estimated by rule of mixture. The first order shear deformation theory and Euler-Lagrange variational principle are employed to derive the motion equations incorporating the thermal effects. The vibration characteristics under several patterns of reinforcement are presented and discussed. We conducted a series of studies aimed at revealing the effects of the spring stiffness, environment temperature, thickness ratios and carbon nanotube volume fraction on the nature frequency.