• 제목/요약/키워드: Thermal Environment Prediction Model

검색결과 50건 처리시간 0.024초

식물생산시스템의 다목적 환경예측 모델의 개발 -기본 시스템 구축 및 응용- (Development of a Multipurpose-Oriented Environmental Prediction Model for Plant Production System - Construction of the Basic System and its Application -)

  • 손정익;이동근;김문기
    • 생물환경조절학회지
    • /
    • 제2권2호
    • /
    • pp.126-135
    • /
    • 1993
  • Recently, the characteristic of plant production systems in Korea has been changed with the strong trends of integration and large scale, using environmental control techniques. To satisfy this change successfully, first of all, the environmental prediction inside the system must be preceded. While many environmental prediction models for plant production system were developed by many persons, each model cannot be applied to the every situation without the perfect understanding of source codes and the technical modification. The purpose of this study is building the environmental prediction model to predict and evaluate the environment inside the system numerically, and also developing the multipurpose program available for practical design. The model consisted of the basic system model, the cultivation related model and the environmental control related model. The contents of each model are as follows : the basic system model is dealing with thermal and light environments, soil environment and ventilation : the cultivation related model with soil and hydroponic cultures ; and the environmental control related model with thermal curtain and heat exchanging system. The environmental prediction model was developed using a common simulation program, PCSMP, so that it could be easily understood and modified by anyone. Finally, the model was executed and verified through comparison between simulated and measured results for soil culture, and both results showed good agreements.

  • PDF

열전도 환경을 고려한 전장탑재물의 소자 열 해석 (Thermal Analysis of Electronic Devices in an Onboard Unit Considering Thermal Conduction Environment)

  • 김주년;김보관
    • 전자공학회논문지SC
    • /
    • 제43권5호
    • /
    • pp.60-67
    • /
    • 2006
  • 우주 비행체 전자장비의 신뢰도를 예측하고 최적화하기 위해 탑재장치 내 부품의 온도 예측이 필수적으로 요구된다. 본 논문에서는 전자장비 부품의 온도 예측방법에 관해 기술하고 있다. 본 예측 방법은 PCB 기판의 열전도도를 등방성모델로 설정하여 등가 열전도도를 계산하고 열력 모델을 이용하여 열 저항 행렬을 생성하였으며, 중첩의 원리를 이용하여 각 부품들의 온도를 예측하였다. 또한 본 논문의 온도 예측방법을 이용하여 전장품 소자의 열해석 결과와 상용 프로그램을 이용한 온도 계산 결과를 비교 분석하였다.

데이터센터 냉각 시스템의 에너지 절약을 위한 인공신경망 기반 열환경 예측 모델 (Artificial Neural Network-based Thermal Environment Prediction Model for Energy Saving of Data Center Cooling Systems)

  • 임채영;여채은;안성율;이상현
    • 문화기술의 융합
    • /
    • 제9권6호
    • /
    • pp.883-888
    • /
    • 2023
  • 데이터센터는 24시간 365일 IT 서비스를 제공하는 곳이기 때문에, 2030년에는 데이터센터의 전력 소비량은 약 10%로 증가될 것으로 예측되고, 고밀도 IT장비들의 도입이 점차 증가하면서, IT장비가 안정적으로 운영될 수 있도록 냉방 에너지 절감 및 이를 위한 에너지 관리가 갖춰져야 하기에 다양한 연구가 요구되고 있는 상황이다. 본 연구는 데이터센터의 에너지 절약을 위해 다음과 같은 과정을 제안한다. 데이터센터를 CFD 모델링하고, 인공지능기반 열환경 예측 모델을 제안하였으며, 실측 데이터와 예측 모델 그리고 CFD 결과를 비교하여 최종적으로 데이터 센터의 열관리 성능을 평한 결과 전처리 방식은 정규화 방식으로 사용되었고, 정규화에 따른 RCI, RTI 및 PUE의 예측값 또한 유사한 것을 확인할 수 있다. 따라서 본 연구에서 제안하는 알고리즘으로 데이터센터에 적용될 열환경 예측 모델로 적용 및 제공할 수 있을 것으로 판단된다.

용담호 수온성층해석을 위한 유입수온 회귀분석 모형 개발 (Development of the Inflow Temperature Regression Model for the Thermal Stratification Analysis in Yongdam Reservoir)

  • 안기홍;김선주;서동일
    • 환경영향평가
    • /
    • 제20권4호
    • /
    • pp.435-442
    • /
    • 2011
  • In this study, a regression model was developed for prediction of inflow temperature to support an effective thermal stratification simulation of Yongdam Reservoir, using the relationship between gaged inflow temperature and air temperature. The effect of reproductability for thermal stratification was evaluated using EFDC model by gaged vertical profile data of water temperature(from June to December in 2005) and ex-developed regression models. Therefore, in the development process, the coefficient of correlation and determination are 0.96 and 0.922, respectively. Moreover, the developed model showed good performance in reproducing the reservoir thermal stratification. Results of this research can be a role to provide a base for building of prediction model for water quality management in near future.

열화상 이미지 다중 채널 재매핑을 통한 단일 열화상 이미지 깊이 추정 향상 (Enhancing Single Thermal Image Depth Estimation via Multi-Channel Remapping for Thermal Images)

  • 김정윤;전명환;김아영
    • 로봇학회논문지
    • /
    • 제17권3호
    • /
    • pp.314-321
    • /
    • 2022
  • Depth information used in SLAM and visual odometry is essential in robotics. Depth information often obtained from sensors or learned by networks. While learning-based methods have gained popularity, they are mostly limited to RGB images. However, the limitation of RGB images occurs in visually derailed environments. Thermal cameras are in the spotlight as a way to solve these problems. Unlike RGB images, thermal images reliably perceive the environment regardless of the illumination variance but show lacking contrast and texture. This low contrast in the thermal image prohibits an algorithm from effectively learning the underlying scene details. To tackle these challenges, we propose multi-channel remapping for contrast. Our method allows a learning-based depth prediction model to have an accurate depth prediction even in low light conditions. We validate the feasibility and show that our multi-channel remapping method outperforms the existing methods both visually and quantitatively over our dataset.

Environmental Modeling and Thermal Comfort in Buildings in Hot and Humid Tropical Climates

  • Muhammad Awaluddin Hamdy;Baharuddin Hamzah;Ria Wikantari;Rosady Mulyadi
    • Architectural research
    • /
    • 제25권4호
    • /
    • pp.73-84
    • /
    • 2023
  • Indoor thermal conditions greatly affect the health and comfort of humans who occupy the space in it. The purpose of this research is to analyze the influence of water and vegetation elements as a microclimate modifier in buildings to obtain thermal comfort through the study of thermal environment models. This research covers two objects, namely public buildings and housing in Makassar City, South Sulawesi Prov-ince - Indonesia. Quantitative methods through field surveys and measurements based on thermal and personal variables. Data analysis based on ASHRAE 55 2020 standard. The data was processed with a parametric statistical approach and then simulated with the Computational Fluid Dynamics (CFD) simulation method to find a thermal prediction model. The model was made by increasing the ventilation area by 2.0 m2, adding 10% vegetation with shade plant characteristics, moving water features in the form of fountains and increasing the pool area by 15% to obtain PMV + 0.23, PPD + 8%, TSV-1 - +0, Ta_25.7℃, and relative humidity 63.5 - 66%. The evaluation shows that the operating temperature can analyze the visitor's comfort temperature range of >80% and comply with the ASHRAE 55-2020 standard. It is concluded that water elements and indoor vegetation can be microclimate modifiers in buildings to create desired comfort conditions and adaptive con-trols in buildings such as the arrangement of water elements and vegetation and ventilation systems to provide passive cooling effects in buildings.

실내공기환경 예측을 위한 통합 다구획 모델의 개발 (Development of an Integrated Multizone Model for Indoor Air Environment Prediction)

  • 조석호
    • 한국환경과학회지
    • /
    • 제17권9호
    • /
    • pp.993-1003
    • /
    • 2008
  • Interior space in most buildings is divided into several zones. The most important factors relating to the indoor air environment are temperature, airflow, humidity, and contaminant concentration. An integrated multizone model to predict these environmental factors simultaneously was developed. Also, a computer program for this model was written by the language of VISUAL BASIC. The proposed model was applied to a apartment with five rooms that had been tested by Chung. Comparison of predicted results by this study with measured results by Chung showed that their variations were within 14% for airflow rates, 1% for temperatures, 12% for humidities, and 5% for concentrations. It was seen that the opening operation schedule of building has a significant effect on the air moisture md contaminant removal. Thus, this model may be available for predicting the indoor air environment and may be contributed to design the ventilation plan for controling of indoor air quality.

한국형 발사체 기저부 열전달 해석을 위한 플룸 복사 모델링 개념 개발 (A Development of Thermal Radiation Plume Modelling for Heat Transfer to KSLV-II Engine Base)

  • 김성룡;고주용;김인선
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2012년도 제38회 춘계학술대회논문집
    • /
    • pp.507-514
    • /
    • 2012
  • 한국형 발사체의 플룸 형상과 플룸 복사열 해석을 위해 NASA LRB 플룸 복사 모델을 구현하였으며 열해석 소프트웨어인 Thermal Desktop에서 형상화하여 실제 복사 열전달을 계산하여 NASA 예측결과와 비교하였다. 계산 결과 NASA 예측과 비슷한 수준의 정확도를 나타냈으며 한국형 발사체에 적용 가능한 수준의 플룸 모델 형상을 제안하였다.

  • PDF

The Numerical Prediction of the Micro Climate Change by a Residential Development Region

  • Oh, Eun-Joo;Lee, Hwa Woon;Kondo, Akira;Kaga, Akikazu;Yamaguchi, Katsuhito
    • 한국환경과학회지
    • /
    • 제12권5호
    • /
    • pp.529-539
    • /
    • 2003
  • We developed a numerical model that considered the influences on the thermal environment of vegetation, water surfaces and buildings to predict micro climatic changes in a few $\textrm{km}^2$ scales; and applied this model to the Mino residential development region in Osaka Prefecture by using a nested technique. The calculated temperatures and winds in the residential development region reasonably agreed with the observed ones. We then investigated the influences on the thermal environment of the construction of a dam, the change of the green coverage rate. The results obtained from the numerical simulations were qualitatively reasonable.

Numerical buckling temperature prediction of graded sandwich panel using higher order shear deformation theory under variable temperature loading

  • Sahoo, Brundaban;Sahoo, Bamadev;Sharma, Nitin;Mehar, Kulmani;Panda, Subrata Kumar
    • Smart Structures and Systems
    • /
    • 제26권5호
    • /
    • pp.641-656
    • /
    • 2020
  • The finite element solutions of thermal buckling load values of the graded sandwich curved shell structure are reported in this research using a higher-order kinematic model including the shear deformation effect. The numerical buckling temperature has been computed using an in-house specialized code (MATLAB environment) prepared in the framework of the current mathematical formulation. In addition, the mathematical model includes the excess structural distortion under the influence of elevated environment via Green-Lagrange nonlinear strain. The corresponding eigenvalue equation has been solved to predict the critical buckling temperature of the graded sandwich structure. The numerical stability and the accuracy of the current solution have been confirmed by comparing with the available published results. Thereafter, the model is extended to bring out the influences of structural parameters i.e. the curvature ratio, core-face thickness ratio, support conditions, power-law indices and sandwich types on the thermal buckling behavior of graded sandwich curved shell panels.