• Title/Summary/Keyword: Thermal Effect

Search Result 7,006, Processing Time 0.035 seconds

The Effect of Pt and La Promoted on Cobalt-Based Catalyst for CO2 Dry Reforming (이산화탄소 건식 개질반응을 위한 코발트계 촉매에서 Pt와 La의 영향)

  • Lee, Hye-Hyun;Song, Sang-Hoon;Chang, Tae-Sun;Hong, Ji-Sook;Suh, Jeong-Kwon;Lee, Chang-Yong
    • Applied Chemistry for Engineering
    • /
    • v.22 no.2
    • /
    • pp.161-166
    • /
    • 2011
  • The $CO_2$ dry reforming reaction, which converts carbon dioxide to hydrogen and carbon monoxide, is typical endothermic reaction, and also known as adverse reaction owing to thermodynamics. In order to overcome the problem, the development studies of suitable catalyst based on precious metals for high durability of thermal and optimization of life time have been examined but it had economical problem by high cost. In this study, we confirmed optimum contents of Pt and La with such different contents of Pt (0.02~0.2 wt%) or La (2~20 wt%) over $Co/SiO_2$ which prepared for excellent activity and cost-effective catalysts. As a result, the promoted catalysts with 0.04 wt% Pt or 9 wt% La over $Co/SiO_2$ showed the highest activity which is 57% and 55% $CO_2$ conversion respectively. Also, the particle size of cobalt on the promoted catalysts with 0.04 wt% Pt or 9 wt% La by characterization of catalyst could confirm the smallest particle size in this study. Therefore, it could know that particle size of cobalt had effected the stability and reactivity of catalysts due to the contents of Pt and La.

Performance of Pentacene-based Thin-film Transistors Fabricated at Different Deposition Rates (증착 속도에 따른 펜타센 박막 트랜지스터의 성능 연구)

  • Hwang, Jinho;Kim, Duri;Kim, Meenwoo;Lee, Hanju;Babajanyan, Arsen;Odabashyan, Levon;Baghdasaryan, Zhirayr;Lee, Kiejin;Cha, Deokjoon
    • New Physics: Sae Mulli
    • /
    • v.68 no.11
    • /
    • pp.1192-1195
    • /
    • 2018
  • We studied the electrical properties of organic thin-film transistors (OTFTs) fabricated at different deposition rates by measuring the field-effect mobility and the threshold voltages. As the active layer, pentacene thin film with a thickness of 50 nm was deposited at a rate of $0.05{\AA}/s$ to $1.14{\AA}/s$. The thickness of the drain-source gold electrode was 50 nm. The mobility was $1.9{\times}10^{-1}cm^2/V{\cdot}s$ at a deposition rate of $0.05{\AA}/s$, the mobility increased to $5.2{\times}10^{-1}cm^2/V{\cdot}s$ when the deposition rate was increased to $0.4{\AA}/s$, and then the mobility decreased to $6.5{\times}10^{-1}cm^2/V{\cdot}s$ when the deposition rate decreased to $1.14{\AA}/s$. Thus, the mobility of pentacene OTFTs was observed to depend on the thermal deposition rate.

Effects of acute heat stress on salivary metabolites in growing pigs: an analysis using nuclear magnetic resonance-based metabolomics profiling

  • Kim, Byeonghyeon;Kim, Hye Ran;Kim, Ki Hyun;Ji, Sang Yun;Kim, Minji;Lee, Yookyung;Lee, Sung Dae;Jeong, Jin Young
    • Journal of Animal Science and Technology
    • /
    • v.63 no.2
    • /
    • pp.319-331
    • /
    • 2021
  • Heat stress (HS) causes adverse impacts on pig production and health. A potential biomarker of HS is required to predict its occurrence and thereby better manage pigs under HS. Information about the saliva metabolome in heat-stressed pigs is limited. Therefore, this study was aimed to investigate the effects of acute HS on the saliva metabolome and identify metabolites that could be used as potential biomarkers. Growing pigs (n = 6, 3 boars, and 3 gilts) were raised in a thermal neutral (TN; 25℃) environment for a 5-d adaptation period (CON). After adaptation, the pigs were first exposed to HS (30℃; HS30) and then exposed to higher HS (33℃; HS33) for 24 h. Saliva was collected after adaptation, first HS, and second HS, respectively, for metabolomic analysis using 1H-nuclear magnetic resonance spectroscopy. Four metabolites had significantly variable importance in the projection (VIP > 1; p < 0.05) different levels in TN compared to HS groups from all genders (boars and gilts). However, sex-specific characteristics affected metabolites (glutamate and leucine) by showing the opposite results, indicating that HS was less severe in females than in males. A decrease in creatine levels in males and an increase in creatine phosphate levels in females would have contributed to a protective effect from protein degradation by muscle damage. The results showed that HS led to an alteration in metabolites related to energy and protein. Protection from muscle damage may be attributed to the alteration in protein-related metabolites. However, energy-related metabolites showed opposing results according to sex-specific characteristics, such as sex hormone levels and subcutaneous fat layer. This study had shown that saliva samples could be used as a noninvasive method to evaluate heat-stressed pigs. And the results in this study could be contributed to the development of a diagnostic tool as a noninvasive biomarker for managing heat-stressed pigs.

A Study on the Microstructure and Magnetic Properties of Fe83.2Si5.33-0.33xB10.67-0.67xPxCu0.8 Nanocrystalline Soft Magnetic Alloys with varying P Content (Fe83.2Si5.33-0.33xB10.67-0.67xPxCu0.8 나노결정질 연자성 합금의 P함량에 따른 미세구조 및 자기적 특성 변화 관찰에 관한 연구)

  • Im, Hyun Ah;Bae, Kyoung-Hoon;Nam, Yeong gyun;An, Subong;Yang, Sangsun;Kim, Yong-Jin;Lee, Jung Woo;Jeong, Jae Won
    • Journal of Powder Materials
    • /
    • v.28 no.4
    • /
    • pp.293-300
    • /
    • 2021
  • We investigate the effect of phosphorous content on the microstructure and magnetic properties of Fe83.2Si5.33-0.33xB10.67-0.67xPxCu0.8 (x = 1-4 at.%) nanocrystalline soft magnetic alloys. The simultaneous addition of Cu and P to nanocrystalline alloys reportedly decreases the nanocrystalline size significantly, to 10-20 nm. In the P-containing nanocrystalline alloy, P atoms are distributed in an amorphous residual matrix, which suppresses grain growth, increases permeability, and decreases coercivity. In this study, nanocrystalline ribbons with a composition of Fe83.2Si5.33-0.33xB10.67-0.67xPxCu0.8 (x = 1-4 at.%) are fabricated by rapid quenching melt-spinning and thermal annealing. It is demonstrated that the addition of a small amount of P to the alloy improves the glass-forming ability and increases the resistance to undesirable Fex(B,P) crystallization. Among the alloys investigated in this work, an Fe83.2Si5B10P1Cu0.8 nanocrystalline ribbon annealed at 460℃ exhibits excellent soft-magnetic properties including low coercivity, low core loss, and high saturation magnetization. The uniform nanocrystallization of the Fe83.2Si5B10P1Cu0.8 alloy is confirmed by high-resolution transmission electron microscopy analysis.

A Study on the Emission and Particulate Matter of a Heavy Duty Natural Gas Engine According to Gas Composition under certification tests (인증시험 조건에서 가스조성 변화에 따른 대형 천연가스 엔진 배기가스 및 입자상 물질 배출 특성에 관한 연구)

  • Choi, Ji-Seon;Park, Cheol-Woong;Jang, Hyoung-Jun;Kim, Chang-Gi
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.6
    • /
    • pp.66-73
    • /
    • 2021
  • In this study, The full load test and WHTC mode test were performed to examine the effect on a heavy duty natural gas engine according to the type of standard gas for certification to check engine performance and exhaust characteristics. Two types of standard gas (Gr, G23) and commercially available natural gas were applied as the fuel used. As a result of the test results of three natural gases with different fuel compositions, G23 with a high nitrogen content was inferior in torque, fuel consumption, and thermal efficiency conditions. In addition, when evaluated in the WHTC mode it was possible to obtain a result that satisfies the EURO VI regulation. However, compared to the other two fuels, the emission characteristics of G23 decreased CO2 and CO, but increased CH4, NOx and PN emissions.

A Study on the Buckling Stability due to Lateral Impact of Gas Pipe Installed on the Sea-bed (해저면에 설치된 가스관의 외부충격에 의한 좌굴 안전성 검토)

  • Park, Joo-Shin;Yi, Myung-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.414-421
    • /
    • 2022
  • Subsea oil and gas exploration is increasingly moving into deeper water depths, and typically, subsea pipelines operate under high pressure and temperature conditions. Owing to the difference in these components, the axial force in the pipe is accumulated. When a pipeline is operated at a high internal pressure and temperature, it will attempt to expand and contract for differential temperature changes. Typically, the line is not free to move because of the plane strain constraints in the longitudinal direction and soil friction effects. For a positive differential temperature, it will be subjected to an axial compressive load, and when this load reaches a certain critical value, the pipe may experience vertical (upheaval buckling) or lateral (snaking buckling) movements that can jeopardize the structural integrity of the pipeline. In these circumstances, the pipeline behavior should be evaluated to ensure the pipeline structural integrity during operation in those demanding loading conditions. Performing this analysis, the correct mitigation measures for thermal buckling can be considered either by accepting bar buckling but preventing the development of excessive bending moment or by preventing any occurrence of bending.

A Numerical Study on the Step 0 Benchmark Test in Task C of DECOVALEX-2023: Simulation for Thermo-Hydro-Mechanical Coupled Behavior by Using OGS-FLAC (DECOVALEX-2023 Task C 내 Step 0 벤치마크 수치해석 연구: OGS-FLAC을 활용한 열-수리-역학 복합거동 수치해석)

  • Kim, Taehyun;Park, Chan-Hee;Lee, Changsoo;Kim, Jin-Seop
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.610-622
    • /
    • 2021
  • The DECOVALEX project is one of the representative international cooperative projects to enhance the understanding of the complex Thermo-Hydro-Mechanical-Chemical(THMC) coupled behavior in the high-level radioactive waste disposal system based on the numerical simulation. DECOVALEX-2023 is the current phase consisting of 7 tasks, and Task C aims to model the THM coupled behavior in the disposal system based on the Full-scale Emplacement (FE) experiment at the Mont-Terri underground rock laboratory. This study performs the numerical simulation based on the OGS-FLAC developed for the current study. In the numerical model, we emplaced the heater with constant power horizontally based on the FE experiment and monitored the pressure development, temperature increase, and mechanical deformation at the specific monitoring points. We monitored the capillary pressure as the primary effect inducing the flow in the buffer system, and thermal stress and pressurization were dominant in the surrounding rocks' area. The results will also be compared and validated with the other participating groups and the experimental data further.

A Numerical Study on the Effects of Urban Forest and Street Tree on Air Flow and Temperature (도시숲과 가로수가 대기 흐름과 기온에 미치는 영향에 관한 수치 연구)

  • Kang, Geon;Choi, Wonsik;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1395-1406
    • /
    • 2022
  • This study investigated the effects of the urban forest and street trees on flow and temperature distribution in the Daegu National Debt Redemption Movement Memorial Park. For this, we implemented tree-drag and tree-cooling parameterization schemes in a computational fluid dynamics (CFD) model and validated the simulated wind speeds, wind directions, and air temperatures against the measured ones. We used the wind speeds, wind directions, air temperatures predicted by the local data assimilation and prediction system (LDAPS) as the inflow boundary conditions. To investigate the flow and thermal characteristics in the presence of trees in the target area, we conducted numerical experiments in the absence and presence of trees. In the absence of trees, strong winds and monotonous flows were formed inside the park, because there were no obstacles inducing friction. The temperature was inversely proportional to the wind speed. In the presence of trees, the wind speeds(temperatures) were reduced by more than 40 (5)% inside the park with a high planting density due to the tree drag (cooling) effect, and those also affected the wind speeds and temperatures outside the park. Even near the roadside, the wind speeds and temperatures were generally reduced by the trees, but the wind speeds and air temperatures increased partly due to the change in the flow pattern caused by tree drag.

Delamination Prediction of Semiconductor Packages through Finite Element Analysis Reflecting Moisture Absorption and Desorption according to the Temperature and Relative Humidity (유한요소 해석을 통해 온도와 상대습도에 따른 수분 흡습 및 탈습을 반영한 반도체 패키지 구조의 박리 예측)

  • Um, Hui-Jin;Hwang, Yeon-Taek;Kim, Hak-sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.3
    • /
    • pp.37-42
    • /
    • 2022
  • Recently, the semiconductor package structures are becoming thinner and more complex. As the thickness decrease, interfacial delamination due to material mismatch can be further maximized, so the reliability of interface is a critical issue in industry field. Especially, the polymers, which are widely used in semiconductor packaging, are significantly affected by the temperature and moisture. Therefore, in this study, the delamination prediction at the interface of package structure was performed through finite element analysis considering the moisture absorption and desorption under the various temperature conditions. The material properties such as diffusivity and saturated moisture content were obtained from moisture absorption test. The hygro-swelling coefficients of each material were analyzed through TMA and TGA after the moisture absorption. The micro-shear test was conducted to evaluate the adhesion strength of each interface at various temperatures considering the moisture effect. The finite element analysis of interfacial delamination was performed that considers both deformation due to temperature and moisture absorption. Consequently, the interfacial delamination was successfully predicted in consideration of the in-situ moisture desorption and temperature behavior during the reflow process.

Enhanced Thermoelectric Properties in n-Type Bi2Te3 using Control of Grain Size (Grain 크기 조절을 통한 n-Type Bi2Te3 열전 소재 특성 향상)

  • Lee, Nayoung;Ye, Sungwook;Jamil Ur, Rahman;Tak, Jang-Yeul;Cho, Jung Young;Seo, Won Seon;Shin, Weon Ho;Nam, Woo Hyun;Roh, Jong Wook
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.4
    • /
    • pp.91-96
    • /
    • 2021
  • The enhancement of thermoelectric figure of merit was achieved by the simple processes of sieving and high energy ball milling, respectively, which are enable to reduce the grain size of n-type Bi2Te3 thermoelectric materials. By optimizing the grain size, the electrical conductivities and thermal conductivities were controlled. In this study, spark plasma sintering was employed for hindering the grain growth during the sintering process. The thermoelectric figure of merit was measured to be 0.78 in the samples with 30 min high energy ball milling process. Notably, this value was 40 % higher than that of pristine Bi2Te3 sample. This result shows the properties of thermoelectric materials can be readily controlled by optimization of grain size via simple ball milling process.