• Title/Summary/Keyword: Thermal Diffusion

Search Result 938, Processing Time 0.029 seconds

Influence of Dose on the Property of Cobalt Silicides in Source/Drain Area (소오스/드레인 영역의 도펀트 양의 증가에 따른 코발트실리사이드의 물성변화)

  • Cheong, Seong-Hwee;Song, Oh-Sung;Kim, Min-Sung
    • Korean Journal of Materials Research
    • /
    • v.13 no.1
    • /
    • pp.43-47
    • /
    • 2003
  • As and BF$_2$dopants are implanted for the formation of source/drain with dose of 1${\times}$10$^{15}$ ions/$\textrm{cm}^2$∼5${\times}$10$^{15}$ ions/$\textrm{cm}^2$ then formed cobalt disilicide with Co/Ti deposition and doubly rapid thermal annealing. Appropriate ion implantation and cobalt salicide process are employed to meet the sub-0.13 $\mu\textrm{m}$ CMOS devices. We investigated the process results of sheet resistance, dopant redistribution, and surface-interface microstructure with a four-point probe, a secondary ion mass spectroscope(SIMS), a scanning probe microscope (SPM), and a cross sectional transmission electron microscope(TEM), respectively. Sheet resistance increased to 8%∼12% as dose increased in $CoSi_2$$n^{+}$ and $CoSi_2$$p^{V}$ , while sheet resistance uniformity showed very little variation. SIMS depth profiling revealed that the diffusion of As and B was enhanced as dose increased in $CoSi_2$$n^{+}$ and $CoSi_2$$p^{+}$ . The surface roughness of root mean square(RMS) values measured by a SPM decreased as dose increased in $CoSi_2$$n^{+}$ , while little variation was observed in $CoSi_2$$p^{+}$ . Cross sectional TEM images showed that the spikes of 30 nm∼50 nm-depth were formed at the interfaces of $CoSi_2$$n^{+}$ / and $CoSi_2$/$p^{+}$, which indicate the possible leakage current source. Our result implied that Co/Ti cobalt salicide was compatible with high dose sub-0.13$\mu\textrm{m}$ process.

Joining of $\textrm{ZrO}_2$/Na $\beta$"-Alumina to $\alpha$-Alumina using Aluminoborate Glass Sealant (Aluminoborate계 유리질을 사용한 $\textrm{ZrO}_2$/Na $\beta$"-알루미나 복합재와 $\alpha$-알루미나간의 접합)

  • Park, Sang-Myeon;Choe, Gi-Yong;Park, Jeong-Yong;Kim, Gyeong-Heum
    • Korean Journal of Materials Research
    • /
    • v.9 no.1
    • /
    • pp.35-41
    • /
    • 1999
  • In this study we investigated the effects of process variables on the bond strength, and its dependency upon the interfacial chemistry when the joined $ZrO_2$ toughened $Na\beta$"-alumina to $\alpha$-alumina using B$_2$$O_3$-$SiO_2$-Al$_2$$O_3$-CaO glass sealant. We observed that bond strength is mainly determined by the strength of the glass, which, in turn, depends on the glass composition established after joining reaction. Joining at $950^{\circ}C$ for 15min yielded the highest average bond strength of 66MPa. Different types of interfacial reaction seem to occur at each interface. After joining at $950^{\circ}C$ for 15min we found that Ca and Si diffuse much deeper(~15$\mu\textrm{m}$) into the $\beta$"-alumina composite than into the $\alpha$-alumina(<1$\mu\textrm{m}$) as a result of ion exchange reaction and more effective grain boundary diffusion. Thermal expansion coefficient of the glass was found to have changed more closely to those of the $\beta$"-alumina composite and $\alpha$-alumina, which put the glass under a slight compressive stress.ressive stress.

  • PDF

Effect of Thermal Diffusion on Autumn Traffic in Street Space (가을철 교통조건에 따른 가로공간 열확산 분포 영향)

  • Yoon, Yong-Han;Kim, Jeong-Ho
    • Journal of Environmental Science International
    • /
    • v.26 no.4
    • /
    • pp.467-481
    • /
    • 2017
  • This study sought to determine the changes in weather conditions in urban streets, along with conditions of traffic and roads in urban areas. The variations in weather conditions depending on traffic differed according to distance. First, the temperature difference measured by traffic results is as follows: T1 point $1.03^{\circ}C$, T2 point $1.04^{\circ}C$, T3 point $0.9^{\circ}C$, T4 point $1.01^{\circ}C$, and T5 point $0.31^{\circ}C$. The average difference between the measured temperatures by the point of measurement was $0.86^{\circ}C$. The changes in wind velocity according to traffic volume results of the measurements is T1 point 1.32 m/s, T2 point 0.80 m/s, T3 point 0.29 m/s, T4 point 0.04 m/s, and T5 point 0.09 m/s. The difference between the average wind speeds was 0.51 m/s and traffic jams caused substantial differences in distance. The relative humidity tended to be inversely proportional to temperature. The measurements results ares T1 point 2.29%, T2 point 2.67%, T3 point 2.47%, T4 point 2.16%, and T5 point 0.91% The difference between the average relative humidity was 7.3%. In case of independent sampling T test according to traffic volume, changes in wind velocity and temperature were directly proportional to the level of statistical significance(p<0.01). On the other hand, relative humidity tended to be inversely proportional; however, there was no statistical significance.

Thermomechanical Analysis of Composite Structures in Pyrolysis and Ablation Environments (열분해 및 삭마 환경의 복합재 구조물의 열기계적 연계 해석)

  • Choi, Youn Gyu;Kim, Sung Jun;Shin, Eui Sup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.8
    • /
    • pp.597-604
    • /
    • 2013
  • A coupled thermomechanical analysis of composite structures in pyrolysis and ablation environments is performed. The pyrolysis and ablation models include the effects of mass loss, pore gas diffusion, endothermic reaction energy, surface recession, etc. The thermal and structural analysis interface is based upon a staggered coupling algorithm by using a commercial finite element code. The characteristics of the proposed method are investigated through numerical experiments with carbon/phenolic composites. The numerical studies are carried out to examine the surface recession rate by chemical and mechanical ablation. In addition, the effects of shrinkage or intumescence during the pyrolysis process are shown.

Numerical Analysis of Thermal and Flow affected by the variation of rib interval and Pressure drop Characteristics (리브 간격 변화에 따른 열.유동 수치해석 및 압력 저하 특성)

  • Chung, Han-Shik;Lee, Gyeong-Wan;Shin, Yong-Han;Choi, Soon-Ho;Jeong, Hyo-Min
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.616-624
    • /
    • 2011
  • The flow characteristics and heat transfer augment on the periodically arranged semi-circular ribs in a rectangular channel for turbulent flow has been investigated numerically. The aspect ratio of the rectangular channel was AR=5, the rib height to hydraulic diameter ratio were 0.07 and rib height to channel height ratio was set as e/H=0.117 for various PR(rib pitch-to-rib height rate) between 8~14, respectively. The SST k-${\omega}$ turbulence model and v2-f turbulence model were used to find out the heat transfer and the flow characteristics of near the wall which are suited to obtain realistic phenomena. The numerical analysis results show turbulent flow characteristics, heat transfer enhancement and friction factor as observed experimentally. The results predict that turbulent kinetic energy(k) is closely relative to the diffusion of recirculation flow. and v2-f turbulence model simulation results have a good agreement with experimental values.

Characterization of Electrospun Juniperus Chinensis Extracts Loaded PU Nanoweb (전기방사를 이용한 향나무 추출물 함유 PU 나노웹의 특성)

  • Kim, Jeong-Hwa;Lee, Jung Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.41 no.1
    • /
    • pp.131-140
    • /
    • 2017
  • Uniform nanofibers of polyurethane with different content of Juniperus Chinensis extracts (JCE) were successfully prepared by the electrospinning method. We investigated physiochemical properties of prepared compound nanoweb according to various concentrations of Juniperus Chinensis extracts using a Fourier transform infrared (FT-IR) spectrometer, X-ray diffractometer (XRD), thermogravimeter (TGA), and differential scanning calorimeter (DSC). The antibacterial activity of the JCE loaded PU nanofiber was conducted using the disk diffusion test against Gram-positive and Gram-negative bacteria. JCE was induced in the infrared spectra in the absorption band of PU/JCE nanowebs at $3,300cm^{-1}$, $2,960cm^{-1}$, $1,400-1,600cm^{-1}$, and $1,050cm^{-1}$. Thermal stability decreased with increasing JCE content in the PU/JCE nanowebs. The DSC curve of the PU nanoweb shows an endotherm peak at $420^{\circ}C$; in addition, the peak also became smaller and broader with increasing JCE content. The diffraction intensities of PU observed at 2 theta of $20^{\circ}$ decreased with the increasing amount of JCE in the compound nanoweb. In addition, the crystal intensities of the compound nanowebs also decreased along with the JCE content. Structural analysis indicates that JCE and PU are miscible. Juniperus Chinensis incorporated PU nanofibers demonstrated excellent antibacterial properties against both Gram-positive and Gram-negative bacteria.

Numerical simulation of dimensional changes during sintering of tungsten carbides compacts

  • Bouvard, D.;Gillia, O.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1997.10a
    • /
    • pp.7-7
    • /
    • 1997
  • During sintering of very porous green bodies, as obtained by compaction of hard powders - such as tungsten carbide or ceramics - or by injection moulding, important shrinkage occurs. Due to heterogeneous green density field, gravity effects, friction on the support, thermal gradients, etc., this shrinkage is often non-uniform, which' may induce significant shape changes. As the ratio of compact dimension to powder size is very high, the mechanics of continuum is relevant to model such phenomena. Thus numerical techniques, such as the finite element method can be used to simulate the sintering process and predict the final shape of the sintered part. Such type of simulation has much been developed in the last decade firstly for hot isostatic pressing and next for die compaction. Finite element modelling has been recently applied to free sintering. The simulation of sintering should be based on constitutive equations describing the thermo-mechanical behaviour of the material under any state of stress and any temperature which may arise within the sintering body. These equations can be drawn either from experimental data or from micromechanical models. The experiments usually consist in free sintering and sinter-forging tests. Indeed applying more complex loading conditions at high temperature under controlled atmosphere is delicate. Micromechanical models describe the constitutive behaviour of aggregates of spheres from the deformation of two-sphere contact either by viscous flow or grain boundary diffusion. Such models are not able to describe complex microstructure and mechanisms as observed in real materials but they can give some basic information on the formulation of constitutive equations. Practically both experimental and theoretical approaches can be coupled to identify the constitutive equations. Such procedure has been performed for modelling the sintering of compacts obtained by die pressing of a mixture of tungsten carbide and cobalt powders. The constitutive behaviour of this material during sintering has been described by a linear viscous constitutive model, whose functions have been fitted from results of free sintering and sinter-forging experiments. This model has next been introduced in ABAQUS finite element code to simulate the sintering of heterogeneous green compacts of various geometries at constant temperature. Examples of simulations are shown and compared with experiments.

  • PDF

Drug Release and Skin Irritancy of Poloxamer Gel Containing Kojic Acid (코지산을 함유한 폴록사머 겔 제제의 약물방출 및 피부자극성)

  • Park, Eun-Woo;Cho, Seong-Wan;Kim, Dong-Sup;Choi, Ki-Hwan;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.28 no.3
    • /
    • pp.177-183
    • /
    • 1998
  • Low toxicity, reverse thermal gelation and high drug loading capabilities suggest that poloxamer 407 gels have great potential as a topical drug delivery system. Kojic acid (KA) is an antimelanogenic agent which has been widely used in cosmetics to whiten the skin color. However, it has the drawbacks of skin irritancy due to its acidic pH. Poloxamer gels of different polymer contents were formulated to overcome the problem and compared to the cream type formulations of either w/o/w multiple emulsion cream or o/w type emulsion cream. Using Franz diffusion cells mounted with a synthetic cellulose membrane (MWCO 12,000), drug release characteristics of the formulations were evaluated by the HPLC assay of KA concentration in the receptor compartment of pH 7.4 phosphate buffered saline solutions. Drug release from w/o/w multiple emulsion cream was controlled by oil membrane, showing the apparent zero order release kinetics. The KA release from the poloxamer gels was also controlled by the gel matrix, showing that drug release increased linearly as KA contents increase, but decreased exponentially as the polymer contents increase. In the skin irritancy test, the primary irritancy index(PII) of poloxamer gel base was lower than those of multiple emulsion cream base and o/w cream. Depending on KA contents or polymer contents in the gel. PH values in poloxamer gels were ranged from 1.3 to 2.0, which are interpreted as low or negligible irritation on skin. There was a good correlation between the log value of flux in drug release and PII value in skin irritation. It was possible to conclude that the poloxamer gels containing KA might be a good candidate for an antimelanogenic topical delivery system by virtue of the controlled release of the drug and the reduced skin irritancy.

  • PDF

Thermal Stability and Electrical Properties of HfOxNy Gate Dielectrics with TaN Gate Electrode

  • Kim Jeon-Ho;Choi Kyu-Jeong;Seong Nak-Jin;Yoon Soon-Gil;Lee Won-Jae;Kim Jin-dong;Shin Woong-Chul;Ryu Sang-Ouk;Yoon Sung-Min;Yu Byoung-Gon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.3
    • /
    • pp.34-37
    • /
    • 2003
  • [ $HfO_2$ ] and $HfO_xN_y$ films were deposited by plasma-enhanced chemical vapor deposition using $Hf[OC(CH_3)_3]_4$ as the precursor in the absence of $O_2$. The crystallization temperature of the $HfO_xN_y$ films is higher than that of the $HfO_2$ film. Nitrogen incorporation in $HfO_xN_y$ was confirmed by auger electron spectroscopy analysis. After post deposition annealing (PDA) at 800$\Box$, the EOT increased from 1.34 to 1.6 nm in the $HfO_2$ thin films, whereas the increase of EOT was suppressed to less than 0.02 nm in the $HfO_xN_y$. The leakage current density decreased from 0.18 to 0.012 $A/cm^2$ with increasing PDA temperature in the $HfO_2$ films. But the leakage current density of $HfO_xN_y$ does not vary with increasing PDA temperature because an amorphous $HfO_xN_y$ films suppresses the diffusion of oxygen through the gate dielectric.

Low-resistance ohmic contacts to p-$Hg_{0.7}$$Cd_{0.3}$Te (p-$Hg_{0.7}$$Cd_{0.3}$Te에 낮은 저항의 접촉을 얻는 방법에 대한 연구)

  • Kim, Kwan;Chung, Han;Kim, Sung-Chul;Lee, Hee-Chul;Kim, Choong-Ki;Kim, Hong-Kook;Kim, Jae-Mook
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.10
    • /
    • pp.87-93
    • /
    • 1994
  • Ohmic contacts between Au and p-HgHg_{0.7}Cd_{0.3}Te$ with low specific contact resistance have been obtained. The contact region of the wafer is first pre-heated for 5 seconds in a rapid thermal processing equipment. The temperature reaches a maximum value of about 200$^{\circ}C$ at the end of the 5 seconds. Next, a thin Au film is formed on the contact region by immersing the sample in AuCl$_{3}$ solution. the sample is then post-annealed in the same condition as the pre-heating after Pb/In pad metals are deposited on the electroless Au contacts. The specific contact resistance measured by transmission line model is 5${\times}10^{-3}{\Omega}cm^{2}$ at 80K. RBS and differential Hall measurement data suggest that the above low resistance ohmic contact is ascribed to surface traps and increased gold diffusion rate.

  • PDF