DOI QR코드

DOI QR Code

Thermomechanical Analysis of Composite Structures in Pyrolysis and Ablation Environments

열분해 및 삭마 환경의 복합재 구조물의 열기계적 연계 해석

  • Choi, Youn Gyu (Mechanical Engineering R&D Lab., LIG Nex1 Co., Ltd.) ;
  • Kim, Sung Jun (Department of Aerospace Engineering, Chonbuk National University) ;
  • Shin, Eui Sup (Department of Aerospace Engineering, Chonbuk National University)
  • Received : 2013.03.13
  • Accepted : 2013.07.16
  • Published : 2013.08.01

Abstract

A coupled thermomechanical analysis of composite structures in pyrolysis and ablation environments is performed. The pyrolysis and ablation models include the effects of mass loss, pore gas diffusion, endothermic reaction energy, surface recession, etc. The thermal and structural analysis interface is based upon a staggered coupling algorithm by using a commercial finite element code. The characteristics of the proposed method are investigated through numerical experiments with carbon/phenolic composites. The numerical studies are carried out to examine the surface recession rate by chemical and mechanical ablation. In addition, the effects of shrinkage or intumescence during the pyrolysis process are shown.

본 논문에서는 열분해 및 삭마 환경의 복합재 구조물에 대한 열기계적 연계 해석을 수행하였다. 열분해 과정의 재료 밀도 감소, 기공 가스 확산, 흡열 반응 에너지와 삭마 과정에서의 표면 침식 효과 등을 고려하였다. 상용 유한요소 코드에 교차 연계 알고리듬을 적용하여 완전 연계된 열 해석 및 구조 해석 인터페이스를 구성하였다. 수치 실험을 통해서 탄소/페놀릭 복합재료의 기본적인 열분해 및 삭마 특성을 분석하였다. 특히, 화학적 및 기계적 삭마에 영향을 미치는 주요 인자에 따른 표면 침식량 등을 비교하였다. 또한, 열분해 과정의 수축 또는 팽창 변형도가 재료의 열기계적 거동에 미치는 영향도 검토하였다.

Keywords

References

  1. Ahn, H. K., Park, C. and Sawada, K., "Response of Heatshield Material at Stagnation Point of Pioneervenus Probes," Journal of Thermophysics and Heat Transfer, Vol. 16, No. 3, 2002, pp. 432-439. https://doi.org/10.2514/2.6697
  2. Shin, E. S., Kim, S. J. and Kim, J. I., "Coupled Thermal/Structural Analysis of Mechanical Ablation by Domain/Boundary Decomposition Method," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 39, No. 1, 2011, pp. 1-8. https://doi.org/10.5139/JKSAS.2010.39.1.1
  3. Yun, N.-G., Cho, Y.-J. and Jung, B., "Ablative Composite Materials for Rocket Propulsion System," Journal of The Korean Society for Composite Materials, Vol. 3, No. 2, 1990, 57-64.
  4. Palaninathan, R. and Bindu, S., "Modeling of Mechanical Ablation in Thermal Protection Systems," Journal of Spacecraft and Rockets, Vol. 42, No. 6, 2005, pp. 971-979. https://doi.org/10.2514/1.10710
  5. Koo, J. H., Ho, D. W. H., Bruns, M. C. and Ezekoye, O. A., "A Review of Numerical and Experimental Characterization of Thermal Protection Materials - Properties Characterization," AIAA 2007-2131.
  6. Eekelen, T. V., Bouilly, J. M., Hudrisier S., Dupillier J. M. and Aspa, Y., "Design and Numerical Modelling of Charring Material Ablators for Re-Entry Applications," Proceedings of the 6th European Workshop on Thermal Protection Systems and Hot Structures, 2009.
  7. Leleu, F., Dariol, L. and Bouilly, J. M., "Ablative Thermal Protections for Atmospheric Entry. An Overview of Past Missions and Needs for Future Programmes," Proceedings of the Sixth European Workshop on Thermal Protection Systems and Hot Structures, 2009.
  8. Lee, S. J. and Reddy, J. N., "Non-linear Response of Laminated Composite Plates under Thermomechanical Loading," International Journal of Non-Linear Mechanics, Vol. 40, No 7, 2005, pp. 971-985. https://doi.org/10.1016/j.ijnonlinmec.2004.11.003
  9. Odabas, O. R. and Sarigul-Klijn, N., "Thermomechanical Coupling Effects at High Flight Speeds," AIAA Journal, Vol. 32, No. 2, 1994, pp. 425-430. https://doi.org/10.2514/3.12001
  10. McManus H. L. N. and Springer G. S., "High Temperature Thermomechanical Behavior of Carbon-Phenolic and Carbon-Carbon Composites, II. Results," Journal of Composite Materials, Vol. 26, No. 2, 1992, pp. 230-255. https://doi.org/10.1177/002199839202600205
  11. Sutton, K., "An Experimental Study of a Carbon/Phenolic Ablation Material," NASA TN D-5930, 1970.
  12. Schneider, P. J., Dolton, T. A. and Reed G. W., "Mechanical Erosion of Charring Ablators in Ground-Test and Re-Entry Environments," AIAA Journal, Vol. 6, No. 1, 1968, pp. 64-72. https://doi.org/10.2514/3.4442