DOI QR코드

DOI QR Code

Characterization of Electrospun Juniperus Chinensis Extracts Loaded PU Nanoweb

전기방사를 이용한 향나무 추출물 함유 PU 나노웹의 특성

  • 김정화 (충남대학교 생활과학대학 의류학과) ;
  • 이정순 (충남대학교 생활과학대학 의류학과)
  • Received : 2016.10.20
  • Accepted : 2017.01.05
  • Published : 2017.02.28

Abstract

Uniform nanofibers of polyurethane with different content of Juniperus Chinensis extracts (JCE) were successfully prepared by the electrospinning method. We investigated physiochemical properties of prepared compound nanoweb according to various concentrations of Juniperus Chinensis extracts using a Fourier transform infrared (FT-IR) spectrometer, X-ray diffractometer (XRD), thermogravimeter (TGA), and differential scanning calorimeter (DSC). The antibacterial activity of the JCE loaded PU nanofiber was conducted using the disk diffusion test against Gram-positive and Gram-negative bacteria. JCE was induced in the infrared spectra in the absorption band of PU/JCE nanowebs at $3,300cm^{-1}$, $2,960cm^{-1}$, $1,400-1,600cm^{-1}$, and $1,050cm^{-1}$. Thermal stability decreased with increasing JCE content in the PU/JCE nanowebs. The DSC curve of the PU nanoweb shows an endotherm peak at $420^{\circ}C$; in addition, the peak also became smaller and broader with increasing JCE content. The diffraction intensities of PU observed at 2 theta of $20^{\circ}$ decreased with the increasing amount of JCE in the compound nanoweb. In addition, the crystal intensities of the compound nanowebs also decreased along with the JCE content. Structural analysis indicates that JCE and PU are miscible. Juniperus Chinensis incorporated PU nanofibers demonstrated excellent antibacterial properties against both Gram-positive and Gram-negative bacteria.

Keywords

References

  1. Ali, A. M., Mackeen, M. M., Intansafinar, I., Hamid, M., Lajis, N. H., Elsfarkawy, S. H., & Murakoshi, M. (1996). Antitumor-promoting and antitumor activities of the crude extract from the leaves of Juniperus-chinensis. Journal of Ethnopharmacology, 53(3), 165-169. https://doi.org/10.1016/0378-8741(96)01434-1
  2. Almajhdi, F. N., Fouad, H., Khalil, K. A., Awad, H. M., Mohamed, S. H. S., Elsarnagawy, T., Albarrag, A. M., Al-Jassir, F. F., & Abdo, H. S. (2014). In-vitro anticancer and antimicrobial activities of PLGA/silver nanofiber composites prepared by electrospinning. Journal of Materials Science: Materials in Medicine, 25(4), 1045-1053. doi:10.1007/s10856-013-5131-y
  3. Barikani, M., Kalaee, M. R., Mazinani, S., & Barikani, M. (2015). In-situ polymerization and characterization of polyurethane-urea/diamond nanocomposites. Advances in Chemical and Biological Engineering, 1(2), 1-12.
  4. Bhattarai, N., Edmondson, D., Veiseh, O., Matsen, F. A., & Zhang, M. (2005). Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials, 26(31), 6176-6184. doi:10.1016/j.biomaterials.2005.03.027
  5. Borzacchiello, A., Ambrosio, L., Netti, P. A., Nicolais, L., Peniche, C., Gallardo, A., & San Roman, J. (2001). Chitosan-based hydrogels: synthesis and characterization. Journal of Materials Science: Materials in Medicine, 12(10-12), 861-864. doi:10.1023/A:1012851402759
  6. Bui, H. T., Chung, O. H., & Park, J. S. (2014). Fabrication of electrospun antibacterial curcumin-loaded zein nanofibers. Polymer (Korea), 38(6), 744-751. doi:10.7317/pk.2014.38.6.744
  7. Chang, C. I., Chen, W. C., Shao, Y. Y., Yeh, G. R., Yang, N. S., Chiang, W., & Kuo, Y. H. (2008). A new labdane-type diterpene from the bark of Juniperus chinensis Linn. Natural Product Research, 22(13), 1158-1162. doi:10.1080/14786410601132444
  8. Chang, J. H., An, Y. U., & Sur, G. S. (2003). Poly(lactic acid) nanocomposites with various organoclays. I. Thermomechanical properties, morphology, and gas permeability. Journal of Polymer Science Part B: Polymer Physics, 41(1), 94-103. doi:10.1002/polb.10349
  9. Charernsriwilaiwat, N., Rojanarata, T., Ngawhirunpat, T., Sukma, M., & Opanasopit, P. (2013). Electrospun chitosanbased nanofiber mats loaded with Garcinia mangostana extracts. International Journal of Pharmaceutics, 452(1-2), 333-343. doi:10.1016/j.ijpharm.2013.05.012
  10. Choi, J., Yang, B. J., Bae, G. N., & Jung, J. H. (2015). Herbal extracts incorporated nanofiber fabricated by an electrospinning technique and its application to antimicrobial air filtration. ACS Applied Materials & Interfaces, 7(45), 25313-25320. doi:10.1021/acsami.5b07441
  11. Cosentino, S., Tuberoso, C. I. G., Pisano, B., Satta, M., Mascia, V., Arzedi, E., & Palmas, F. (1999). In-vitro antimicrobial activity and chemical composition of Sardinian Thymus essential oils. Letters in Applied Microbiology, 29(2), 130-135. doi:10.1046/j.1472-765X.1999.00605.x
  12. da Silva, G. R., da Silva-Cunha Jr, A., Behar-Cohen, F., Ayres, E., & Orefice, R. L. (2011). Biodegradable polyurethane nanocomposites containing dexamethasone for ocular route. Materials Science and Engineering: C, 31(2), 414-422. doi:10.1016/j.msec.2010.10.019
  13. Deitzel, J. M., Kleinmeyer, J., Harris, D., & Tan, N. C. B. (2001). The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer, 42 (1), 261-272. doi:10.1016/S0032-3861(00)00250-0
  14. Doh, S. J., Kim, C., Lee, S. G., Lee, S. J., & Kim, H. (2008). Development of photocatalytic $TiO_2$ nanofibers by electrospinning and its application to degradation of dye pollutants. Journal of Hazardous Materials, 154(1-3), 118-127. doi:10.1016/j.jhazmat.2007.09.118
  15. Dorman, H. J., & Deans, S. G. (2000). Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. Journal of Applied Microbiology, 88(2), 308-316. doi:10.1046/j.1365-2672.2000.00969.x
  16. Goldberg, M., Langer, R., & Jia, X. (2007). Nanostructured materials for applications in drug delivery and tissue engineering. Journal of Biomaterials Science, Polymer Edition, 18(3), 241-268. doi:10.1163/156856207779996931
  17. Gonzalez, V., Guerrero, C., & Ortiz, U. (2000). Chemical structure and compatibility of polyamide-chitin and chitosan blends. Journal of Applied Polymer Science, 78(4), 850-857. doi:10.1002/1097-4628(20001024)78:4<850::AID-APP190>3.0.CO;2-N
  18. Hepburn, C. (1992). Polyurethane elastomers. New York, NY: Springer.
  19. Hong, S. M., Kim, T. S., Kang, M. S., Lee, Y. C., & Gong, M. S. (2016). Synthesis of nanofiber using high elastic polyurethane-silk fibroin blends and their biocompatible properties. Polymer (Korea), 40(1), 17-25. doi:10.7317/pk.2016.40.1.17
  20. Huang, M. N., Wang, Y. L., & Luo, Y. F. (2009). Biodegradable and bioactive porous polyurethanes scaffolds for bone tissue engineering. Journal of Biomedical Science and Engineering, 2(1), 36-40. doi:10.4236/jbise.2009.21007
  21. Jayakumar, R., Prabaharan, M., Sudheesh Kumara, P. T., Nair, S. V., & Tamura, H. (2011). Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnology Advances, 29(3), 322-337. doi:10.1016/j.biotechadv.2011.01.005
  22. Jeon, G., Park, S. I., Seo, J., Seo, K., Han, H., & You, Y. C. (2011). Preparation and characterization of UV-cured polyurethane acrylate/ZnO nanocomposite films. Applied Chemistry for Engineering, 22(6), 610-616.
  23. Jiang, Z., Yuan, K. J., Li, S. F., & Chow, W. K. (2006). Study of FTIR spectra and thermal analysis of polyurethane. Guang Pu Xue Yu Guang Pu Fen Xi, 26(4), 624-628.
  24. Jung, H. J., Jung, H. A., Min, B. S., & Choi, J. S. (2015). Anticholinesterase and ${\beta}$-site amyloid precursor protein cleaving enzyme 1 inhibitory compounds from the heartwood of Juniperus chinensis. Chemical and Pharmaceutical Bulletin, 63(11), 955-960. doi:10.1248/cpb.c15-00504
  25. Karim, M. R., Lee, H. W., Kim, R., Ji, B. C., Cho, J. W., Son, T. W., Oh, W., & Yeum, J. H. (2009). Preparation and characterization of electrospun pullulan/ montmorillonite nanofiber mats in aqueous solution. Carbohydrate Polymers, 78(2), 336-342. doi:10.1016/j.carbpol.2009.04.024
  26. Kim, E. H., Kim, H. G., & Kim, J. H. (2013). Preparation and properties of chitosan/poly(vinyl alcohol) nanofibers containing silver zeolite. Textile Science and Engineering, 50(2), 132-138. doi:10.12772/TSE.2013.50.132
  27. Kim, I. K., & Yeum, J. H. (2011). Electrospinning fabrication and characterization of poly(vinyl alcohol)/waterborne polyurethane/montmorillonite nanocomposite nanofibers. Polymer (Korea), 35(6), 553-557. https://doi.org/10.7317/pk.2011.35.6.553
  28. Kim, J. H., Lee, H., Jatoi, A. W., Im, S. S., Lee, J. S., & Kim, I. S. (2016). Juniperus chinensis extracts loaded PVA nanofiber: Enhanced antibacterial activity. Materials Letters, 181, 367-370. doi:10.1016/j.matlet.2016.05.164
  29. Kim, J. H., & Lee, J. S. (2016). Electrospinning fabrication of Juniperus chinensis extracts loaded PU nanoweb. Science of Emotion & Sensibility, 19(3), 43-50. doi:10.14695/KJSOS.2016.19.3.43
  30. Kim, J. I., Pant, H. R., Sim, H. J., Lee, K. M., & Kim. C. S. (2014). Electrospun propolis/polyurethane composite nanofibers for biomedical applications. Materials Science and Engineering: C, 44, 52-57. doi:10.1016/j.msec.2014.07.062
  31. Kim, Y. J., Kim, S. N., Kwon, O. K., Park, M. R., Kang, I. K., & Lee, S. G. (2009). Preparation and characterization of electrospun nanofibers containing natural antimicrobials. Polymer (Korea), 33(4), 307-312.
  32. Lee, K. H., & Rhee, K. H. (2012). Anti-matastatic activity of Juniperus chinensis extract by galectin-3 inhibition. The Korean Journal of Food and Nutrition, 25(4), 713-718. doi:10.9799/ksfan.2012.25.4.713
  33. Lee, S. G., Choi, S. S., & Joo, C. W. (2002). Nanofiber formation of poly(etherimide) under various electrospinning conditions. Journal of Korean Fiber Society, 39(1), 1-13.
  34. Lee, S. H., Tekmen, C., & Sigmund, W. M. (2005). Three-point bending of electrospun $TiO_2$ nanofibers. Materials Science and Engineering: A, 398(1-2), 77-81. doi:10.1016/j.msea.2005.03.014
  35. Lim, J. P., Song, Y. C., Kim, J. W., Ku, C. H., Eun, J. S., Leem, K. H., & Kim, D. K. (2002). Free radical scavengers from the heartwood of Juniperus chinensis. Archives of Pharmacal Research, 25(4), 449-452. doi:10.1007/BF02976600
  36. Oertel, G. (1985). Polyurethane handbook : chemistry, raw materials, processing, application, properties. Munich.New York: Hanser Publishers.
  37. Oliveira, A. L., Lopes, R. B., Carbral, F. A., & Eberlin, M. N. (2006). Volatile compounds from pitanga fruit (Eugenia uniflora L.). Food Chemistry, 99(1), 1-5. doi:10.1016/j.foodchem.2005.07.012
  38. Park, J. A., Moon, J., Lee, S. J., Lim, S. C., & Zyung, T. (2009). Fabrication and characterization of ZnO nanofibers by electrospinning. Current Applied Physics, 9(3), 210-212. doi:10.1016/j.cap.2009.01.044
  39. Paul, D., Paul, S., Roohpour, N., Wilks, M., & Vadgama, P. (2013). Antimicrobial, mechanical and thermal studies of silver particle-loaded polyurethane. Journal of Functional Biomaterials, 4(4), 358-375. doi:10.3390/jfb4040358
  40. Ray, S. S., Yamada, K., Okamoto, M., & Ueda, K. (2003). Biodegradable polylactide/montmorillonite nanocomposites. Journal of Nanoscience and Nanotechnology, 3(6), 503-510. doi:10.1166/jnn.2003.220
  41. Rojas, O. J., Montero, G. A., & Habibi, Y. (2009). Electrospun nanocomposites from polystyrene loaded with cellulose nanowhiskers. Journal of Applied Polymer Science, 113(2), 927-935. https://doi.org/10.1002/app.30011
  42. Sabitha, M., & Sheeja, R. (2015). Preparation and characterization of ampicillin-incorporated electrospun polyurethane scaffolds for wound healing and infection control. Polymer Engineering & Science, 55(3), 541-548. doi:10.1002/pen.23917
  43. Seo, Y. C., Choi, W. Y., Kim, J. S., Zou, Y., Lee, C. G., Ahn, J. H., Shin, I. S., & Lee, H. Y. (2010). Enhancement of antimicrobial activity of nano-encapsulated horseradish aqueous extracts against food-borne pathogens. Korean Journal of Medicinal Crop Science, 18(6), 389-397.
  44. Shami, Z., & Sharifi-Sanjani, N. (2010). The role of Na-montmorillonite on thermal characteristics and morphology of electrospun PAN nanofibers. Fibers and Polymers, 11(5), 695-699. doi:10.1007/s12221-010-0695-3
  45. Shankar, S. S., Rai, A., Ahmad, A., & Sastry, M. (2004). Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. Journal of Colloid and Interface Science, 275(2), 496-502. doi:10.1016/j.jcis.2004.03.003
  46. Shiu, L. L., Chen, W. C., & Kuo, Y. H. (1999). Five new cishimachalane-type sesquiterpenes from the heartwood of Juniperus chinensis var. tsukusiensis. Chemical and Pharmaceutical Bulletin, 47(4), 557-560. doi:10.1248/cpb.47.557
  47. Sirin, S., Cetiner, S., & Sarac, A. S. (2013). Polymer nanofibers via electrospinning: Factors affecting nanofiber quality. Kahramanmaras Sutcu Imam University Journal of Engineering Sciences, 16(2), 1-12.
  48. Son, W. K., Youk, J. H., & Park, W. H. (2006). Antimicrobial cellulose acetate nanofibers containing silver nanoparticles. Carbohydrate Polymers, 65(4), 430-434. doi:10.1016/j.carbpol.2006.01.037
  49. Sorrentino, A., Gorrasi, G., & Vittoria, V. (2007). Potrntial perspectives of bio-nanocomposites for food packaging application. Trends in Food Science & Technology, 18(2), 84-95. doi:10.1016/j.tifs.2006.09.004
  50. Tijing, L. D., Ruelo, M. T. G., Amarjargal, A., Pant, H. R., Park, C. H., Kim, D. W., & Kim, C. S. (2012). Antibacterial and superhydrophilic electrospun polyurethane nanocomposite fibers containing tourmaline nanoparticles. Chemical Engineering Journal, 197, 41-48. doi:10.1016/j.cej.2012.05.005
  51. Unnithan, A. R., Gnanasekaran, G., Sathishkumar, Y., Lee, Y. S., & Kim, C. S. (2014). Electrospun antibacterial polyurethane-cellulose acetate-zein composite mats for wound dressing. Carbohydrate Polymers, 102, 884-892. doi:10.1016/j.carbpol.2013.10.070
  52. Wang, X., Ding, B., & Li, B. (2013). Biomimetic electrospun nanofibrous structures for tissue engineering. Materials Today, 16(6), 229-241. doi:10.1016/j.mattod.2013.06.005
  53. Yu, D. G., Zhu, L. M., White, K., & Branford-White, C. (2009). Electrospun nanofiber-based drug delivery systems. Health, 1(2), 67-75. doi:10.4236/health.2009.12012
  54. Zhuang, X., Cheng, B., Kang, W., & Xu, X. (2010). Electrospun chitosan/gelatin nanofibers containing silver nanoparticles. Carbohydrate Polymers, 82(2), 524-527. doi:10.1016/j.carbpol.2010.04.085
  55. Zhuo, H., Hu, J., Chen, S., & Yeung, L. (2008). Preparation of polyurethane nanofibers by electrospinning. Journal of Applied Polymer Science, 109(1), 406-411. doi:10.1002/app.28067
  56. Zimmermann, B., Bagcioglu, M., Sandt, C., & Kohler, A. (2015). Vibrational microspectroscopy enables chemical characterization of single pollen grains as well as comparative analysis of plant species based on pollen ultrastructure. Planta, 242(5), 1237-1250. doi:10.1007/s00425-015-2380-7