• 제목/요약/키워드: Thermal Conduction

검색결과 758건 처리시간 0.03초

Modification of DC Flashover Voltage at High Altitude on the Basis of Molecular Gas Dynamics

  • Liu, Dong-Ming;Guo, Fu-Sheng;Sima, Wen-Xia
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권2호
    • /
    • pp.625-633
    • /
    • 2015
  • The effect of altitude on thermal conduction, surface temperature, and thermal radiation of partial arc was investigated on the basis of molecular gas dynamics to facilitate a deep understanding of the pollution surface discharge mechanism. The DC flashover model was consequently modified at high altitude. The validity of the modified DC flashover model proposed in this paper was proven through a comparison with the results of high-altitude simulation experiments and earlier models. Moreover, the modified model was found to be better than the earlier modified models in terms of forecasting the flashover voltage. Findings indicated that both the thermal conduction coefficient and the surface thermodynamics temperature of partial arc had a linear decrease tendency with the altitude increasing from 0 m to 3000 m, both of which dropped by approximately 30% and 3.6%, respectively. Meanwhile, the heat conduction and the heat radiation of partial arc both had a similar linear decrease of approximately 15%. The maximum error of DC pollution flashover voltage between the calculation value according to the modified model and the experimental value was within 6.6%, and the pollution flashover voltage exhibited a parabola downtrend with increasing of pollution.

Carbon Black-Polyethylene복합재료의 Percolation Threshold 전후 저항율에 미치는 온도의 영향 (Effect of the Temperature on Resistivity of Carbon Black-Polyethylene Composites Below and Above Percolation Threshold)

  • 신순기
    • 한국재료학회지
    • /
    • 제19권12호
    • /
    • pp.644-648
    • /
    • 2009
  • Temperature dependency of resistivity of the carbon black-polyethylene composites below and above percolation threshold is studied based on the electrical conduction mechanism. Temperature coefficient of resistance of the composites below percolation threshold changed from minus to plus, increasing volume fraction of carbon black; this trend decreased with increasing volume fraction of carbon black. The temperature dependence of resistivity of the composites below percolation threshold can be explained with a tunneling conduction model by incorporating the effect of thermal expansion of the composites into a tunneling gap. Temperature coefficient of resistance of the composites above percolation threshold was positive and its absolute value increased with increasing volume fraction of carbon black. By assuming that the electrical conduction through percolating paths is a thermally activated process and by incorporating the effect of thermal expansion into the volume fraction of carbon black, the temperature dependency of the resistivity above percolation threshold has been well explained without violating the universal law of conductivity. The apparent activation energy is estimated to be 0.14 eV.

고온 초전도 SMES용 전도냉각시스템 특성시험 (Test of the Conduction Cooling System for HTS SMES)

  • 염한길
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제10권1호
    • /
    • pp.62-66
    • /
    • 2008
  • The characteristic of the superconducting magnetic energy storage(SMES) system is faster response, longer life time, more economical, and environment friendly than other uninterruptible power supply(UPS) using battery. So, the SMES system can be used to develop methods for improving power quality where a short interruption of power could lead to a long and costly shutdown. Recently, cryogen free SMES has developed using BSCCO(Bismuth Strontium Calcium Copper Oxide) wire. We fabricated and tested the conduction cooling system for the 600 kJ class HTS SMES. The experiment was accomplished for the simulation coils. The simulation coils were made of aluminium, it is equivalent to thermal mass of 600 kJ HTS SMES coil. The coil is cooled with two GM coolers through the copper conduction bar. In this paper, we report that the test results of cool-down and heat loads characteristics of the simulation coils. The developed conduction cooling system adapted to 600 kJ HTS SMES system and cope with the unexpected sudden heat impact, too.

열 등가회로를 이용한 SPMSM 전동기의 온도 예측 (Prediction of temperature using equivalent thermal network in SPMSM)

  • 김도진;권순오;정재우;홍정표
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.792-793
    • /
    • 2008
  • This paper deals with the temperature calculation using equivalent thermal network for surface mounted permanent magnet synchronous motor(SPMSM) under the steady-state condition. In the equivalent thermal network, heat sources are generated from copper loss and iron loss. Heat transfer consists of conduction, convection and radiation. However, radiation is neglected in this paper because its effect is much smaller than others. Although the heat transfer coefficient in conduction use material property, heat transfer coefficient in convection is difficult to measure due to the atmosphere and ambient condition. Temperatures of each region in SPMSM are measured by thermocouple in operating condition and the thermal resistances of convection are calculated by kirchhoff's current law(KCL) and experimental result. In order to verify the validation and reliability of the proposed equivalent thermal network, temperature which is calculated other load condition is compared with experimental results. Accordingly, temperatures of each region in other SPMSMs will be easily predicted by the proposed equivalent thermal network.

  • PDF

열화상 사진기로 열전도 현상을 시각화한 자료가 소집단 활동에서 초등학생에게 미치는 교육적 효과 - 금속이 차갑게 느껴지는 이유에 대한 정신모형 변화를 중심으로 - (The Educational Effect of the Visualization of Heat Conduction with a Thermal Imaging Camera on Elementary School Students in Small Group Activity - Focusing on the Change of the Mental Model of Why Metal Feels Cold -)

  • 이가람;주은정;박일우
    • 한국초등과학교육학회지:초등과학교육
    • /
    • 제41권3호
    • /
    • pp.569-591
    • /
    • 2022
  • 본 연구는 '금속이 차갑게 느껴지는 이유'를 설명하는 소집단 활동 과정에서 열화상 사진기로 열전도 현상을 시각화한 자료가 초등학생에게 미치는 교육적 효과에 대해서 알아보고자 하였다. 연구를 위해 초등 5학년 4명을 대상으로 '온도와 열' 단원 학습 전후에 사전 사후 심층면담을 진행하였다. 또한 '금속이 차갑게 느껴지는 이유'를 설명하는 추가 차시 수업의 소집단 활동 과정에서 녹화 및 녹음 자료, 학생들의 활동지, 연구자의 연구일지 등을 수집하여, 비교⋅검토하였다. 연구 결과 열화상 사진기로 열전도 현상을 시각화한 자료는 호기심을 유발하고 정교한 관찰 및 통합적 사고의 기회를 제공하였다. 또한 열전도 현상을 시각화한 자료는 학생들의 소집단 활동 과정에서 활발한 의사소통을 위한 해석과 반박의 근거자료로 사용되었다. 학생들은 열화상 동영상 자료를 바탕으로 하는 소집단 토론 과정을 통해 비과학적 신념을 변화시키고 지식을 정교화하였으며 이를 바탕으로 각자의 정신모형을 발달시켰다.

INVERSE HEAT CONDUCTION PROBLEM IN A THIN CIRCULAR PLATE AND ITS THERMAL DEFLECTION

  • Tikhe, A.K.;Deshmukh, K.C.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제9권2호
    • /
    • pp.75-82
    • /
    • 2005
  • An inverse problem of transient heat conduction in a thin finite circular plate with the given temperature distribution on the interior surface of a thin circular plate being a function of both time and position has been solved with the help of integral transform technique and also determine the thermal deflection on the outer curved surface of a thin circular plate defined as $0\;{\leq}\;r\;{\leq}\;a,\;0\;{\leq}\;z\;{\leq}\;h$. The results, obtained in the series form in terms of Bessel's functions, are illustrated numerically.

  • PDF

Mass and energy of erupting plasma associated with a coronal mass ejection in X-rays and EUV

  • Lee, Jin-Yi;Raymond, John C.;Reeves, Katharine K.;Moon, Yong-Jae;Kim, Kap-Sung
    • 천문학회보
    • /
    • 제40권1호
    • /
    • pp.85.1-85.1
    • /
    • 2015
  • We investigate the mass and energy of erupting plasma observed in X-rays and EUV, which is associated with a coronal mass ejection (CME) and an X-class flare. The erupting plasma was observed by both the X-ray telescope (XRT) on Hinode and the Atmospheric Imaging Assembly (AIA) on Solar Dynamic Observatory (SDO). We estimate the emission measures of the erupting plasma using a differential emission measure method. The plasma erupts with a loop-like structure in X-ray and EUV. We estimate the mass of erupting plasma assuming a cylinder structure. In addition, we estimate the radiative loss, thermal conduction, thermal, and kinetic energies of the eruptive hot plasma. We find that the thermal conduction timescale is much shorter than the duration of the eruption. This result implies that additional heating during the eruption may be required to explain the hot plasma observations in X-rays.

  • PDF

극저온냉동기로 전도냉각되는 초전도시스템의 열적 안정성 (Thermal stability of superconducting systems conduction-cooled by cryocooler)

  • 권기범;장호명
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제3권1호
    • /
    • pp.56-63
    • /
    • 2001
  • The thermal stability conditions are investigated for superconducting magnet systems cooled conductively by cryocooler without liquid cryogens. The worst scenario in the systems is that the heat generation in the resistive state exceeds the refrigeration. causing a rise in the temperature of the magnet winding and leading to the burnout. It is shown by an analytical solution that in the continuous resistive state, the temperature may increase indefinitely or a stable steady-state may be reached, depending upon the relative size of the magnet with respect to the refrigeration capacity of the cryocooler. The stability criteria include the temperature-dependent Properties of the magnet materials and the refrigeration characteristics of the cryocooler. A useful graphical scheme is Presented and discussed to demonstrate the physical importance of the results.

  • PDF

Strained Ge Light Emitter with Ge on Dual Insulators for Improved Thermal Conduction and Optical Insulation

  • Kim, Youngmin;Petykiewicz, Jan;Gupta, Shashank;Vuckovic, Jelena;Saraswat, Krishna C.;Nam, Donguk
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제4권5호
    • /
    • pp.318-323
    • /
    • 2015
  • We present a new way to create a thermally stable, highly strained germanium (Ge) optical resonator using a novel Ge-on-dual-insulators substrate. Instead of using a conventional way to undercut the oxide layer of a Ge-on-single-insulator substrate for inducing tensile strain in germanium, we use thin aluminum oxide as a sacrificial layer. By eliminating the air gap underneath the active germanium layer, we achieve an optically insulating, thermally conductive, and highly strained Ge resonator structure that is critical for a practical germanium laser. Using Raman spectroscopy and photoluminescence experiments, we prove that the novel geometry of our Ge resonator structure provides a significant improvement in thermal stability while maintaining good optical confinement.

활성탄을 이용한 시멘트모르타르 마감재의 열적 특성연구 (A Thermal Characteristics Study on the Application Method of Activated Carbon for a Cement Mortar Finishing Materials)

  • 박근석;조규환;박동천
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2011년도 춘계 학술논문 발표대회 1부
    • /
    • pp.115-116
    • /
    • 2011
  • This study aimed at establishing the fundamental data needed to evaluate the applicability and practicability in using a bamboo activated carbon as a construction material. The experiment on the flow of mortars mixed with a bamboo activated carbon before the hardening was carried out for the evaluation of basic properties. The compressive and bending strength of mortar mixed with bamboo activated carbon after the hardening was measured. the thermal conduction rate and density were also measured. An comparative analysis on mortars mixed with pine charcoals was conducted to compare it with exiting materials.

  • PDF