DOI QR코드

DOI QR Code

Strained Ge Light Emitter with Ge on Dual Insulators for Improved Thermal Conduction and Optical Insulation

  • Kim, Youngmin (Department of Electronic Engineering, Inha University) ;
  • Petykiewicz, Jan (Department of Electrical Engineering, Stanford University) ;
  • Gupta, Shashank (Department of Electrical Engineering, Stanford University) ;
  • Vuckovic, Jelena (Department of Electrical Engineering, Stanford University) ;
  • Saraswat, Krishna C. (Department of Electrical Engineering, Stanford University) ;
  • Nam, Donguk (Department of Electronic Engineering, Inha University)
  • Received : 2015.10.14
  • Accepted : 2015.10.25
  • Published : 2015.10.31

Abstract

We present a new way to create a thermally stable, highly strained germanium (Ge) optical resonator using a novel Ge-on-dual-insulators substrate. Instead of using a conventional way to undercut the oxide layer of a Ge-on-single-insulator substrate for inducing tensile strain in germanium, we use thin aluminum oxide as a sacrificial layer. By eliminating the air gap underneath the active germanium layer, we achieve an optically insulating, thermally conductive, and highly strained Ge resonator structure that is critical for a practical germanium laser. Using Raman spectroscopy and photoluminescence experiments, we prove that the novel geometry of our Ge resonator structure provides a significant improvement in thermal stability while maintaining good optical confinement.

Keywords

References

  1. K.-H. Koo, H. Cho, P. Kapur, K. C. Saraswat, Performance comparisons between carbon banotubes, optical, and Cu for future high-performance on-chip interconnect applications, IEEE Trans. Electron Devices, vol. 54, pp. 3206-3215, 2007. https://doi.org/10.1109/TED.2007.909045
  2. D. A. B. Miller, Rationale and challenges for optical interconnects to electronic chips, Proc. IEEE, vol. 88, pp. 728-749, 2000. https://doi.org/10.1109/5.867687
  3. D. Miller, Device Requirements for Optical Interconnects to Silicon Chips, IEEE, vol. 97, pp. 1166-1185, 2009. https://doi.org/10.1109/JPROC.2009.2014298
  4. P. Chaisakul, D. Marris-Morini, M.-S. Rouifed, G. Isella, D. Chrastina, J. Frigerio, et al., 23 GHz Ge/SiGe multiple quantum well electro-absorption modulator., Opt. Express, vol. 20, pp. 3219-3224, 2012. https://doi.org/10.1364/OE.20.003219
  5. P. Chaisakul, D. Marris-Morini, J. Frigerio, D. Chrastina, M.-S. Rouifed, S. Cecchi, et al., Integrated germanium optical interconnects on silicon substrates, Nat Phot, vol. 8, pp. 482-488, 2014. https://doi.org/10.1038/nphoton.2014.73
  6. L. Vivien, A. Polzer, D. Marris-Morini, J. Osmond, J.M. Hartmann, P. Crozat, et al., Zero-bias 40Gbit/s germanium waveguide photodetector on silicon., Opt. Express, vol. 20, pp. 1096-1101, 2012. https://doi.org/10.1364/OE.20.001096
  7. S. Klinger, M. Berroth, M. Kaschel, M. Oehme, E. Kasper, Ge-on-Si p-i-n Photodiodes With a 3-dB Bandwidth of 49 GHz, IEEE Photonics Technol. Lett, vol. 21, pp. 920-922, 2009. https://doi.org/10.1109/LPT.2009.2020510
  8. H.-Y. Y1u, S. Ren, W.S. Jung, A.K. Okyay, D. a. B. Miller, K. C. Saraswat, High-Efficiency p-i-n Photodetectors on Selective-Area-Grown Ge for Monolithic Integration, IEEE Electron Device Lett, vol. 30, pp. 1161-1163, 2009. https://doi.org/10.1109/LED.2009.2030905
  9. D. Ahn, C.-Y. Hong, J. Liu, W. Giziewicz, M. Beals, L.C. Kimerling, et al., High performance, waveguide integrated Ge photodetectors., Opt. Express, vol. 15, pp. 3916-3921, 2007. https://doi.org/10.1364/OE.15.003916
  10. B. Dutt, D.S. Sukhdeo, D. Nam, B. M. Vulovic, K. C. Saraswat, Roadmap to an efficient germaniumon-silicon laser: strain vs. n-type doping, IEEE Photo-nics J, vol. 4, pp. 2002-2009, 2012. https://doi.org/10.1109/JPHOT.2012.2221692
  11. D. Nam, D.S. Sukhdeo, B.R. Dutt, K.C. Saraswat, (Invited) Light Emission from Highly-Strained Germanium for on-Chip Optical Interconnects, ECS Trans, vol. 64, pp. 371-381, 2014.
  12. D. Nam, J.-H. Kang, M. L. Brongersma, K. C. Saraswat, Observation of improved minority carrier lifetimes in high-quality Ge-on-insulator using timeresolved photoluminescence, Opt. Lett, vol. 39, pp. 6205-6208, 2014. https://doi.org/10.1364/OL.39.006205
  13. J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, J. Michel, Ge-on-Si laser operating at room temperature., Opt. Lett, vol. 35, pp. 679-681, 2010. https://doi.org/10.1364/OL.35.000679
  14. Y. Ishikawa, K. Wada, D. D. Cannon, J. Liu, H.-C. Luan, L.C. Kimerling, Strain-induced band gap shrinkage in Ge grown on Si substrate, Appl. Phys. Lett, vol. 82, no. 2044, 2003.
  15. X. Sun, J. Liu, L.C. Kimerling, J. Michel, Toward a Germanium Laser for Integrated Silicon Photonics, IEEE J. Sel. Top. Quantum Electron, vol. 16, pp. 124-131, 2010. https://doi.org/10.1109/JSTQE.2009.2027445
  16. T.-H. Cheng, K.-L. Peng, C.-Y. Ko, C.-Y. Chen, H.-S. Lan, Y.-R. Wu, et al., Strain-enhanced photoluminescence from Ge direct transition, Appl. Phys. Lett, vol. 96, no. 211108, 2010.
  17. M. El Kurdi, H. Bertin, E. Martincic, M. De Kersauson, G. Fishman, S. Sauvage, et al., Control of direct band gap emission of bulk germanium by mechanical tensile strain, Appl. Phys. Lett, vol. 96, no. 041909, 2010.
  18. M. El Kurdi, G. Fishman, S. Sauvage, P. Boucaud, Band structure and optical gain of tensile-strained germanium based on a 30 band k${\cdot}$p formalism, J. Appl. Phys, vol. 107, no. 013710, 2010.
  19. D. Nam, D. S. Sukhdeo, S. Gupta, J. Kang, M.L. Brongersma, K.C. Saraswat, Study of carrier statistics in uniaxially strained Ge for a lowthreshold Ge laser, IEEE J. Sel. Top. Quantum Electron, vol. 20, no. 1500107, 2014.
  20. C.G. Van der Walle, Band lineups and deformation potentials in the model-solid theory, Phys. Rev. B Condens. Matter. vol. 39, no. 1871, 1989.
  21. M. V. Fischetti, S. E. Laux, Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys, J. Appl. Phys, vol. 80, no. 2234, 1996.
  22. D. Nam, D. Sukhdeo, A. Roy, K. Balram, S.-L. Cheng, K. C.-Y. Huang, et al., Strained germanium thin film membrane on silicon substrate for optoelectronics, Opt. Express, vol. 19, pp. 25866-25872, 2011. https://doi.org/10.1364/OE.19.025866
  23. J. R. Sanchez-Perez, C. Boztug, F. Chen, F. F. Sudradjat, D.M. Paskiewicz, R.B. Jacobson, et al., Direct-bandgap light-emitting germanium in tensilely strained nanomembranes, Proc. Natl. Acad. Sci. U. S. A, vol. 108, pp. 18893-18898, 2011. https://doi.org/10.1073/pnas.1107968108
  24. A. Ghrib, M. de Kersauson, M. El Kurdi, R. Jakomin, G. Beaudoin, S. Sauvage, et al., Control of tensile strain in germanium waveguides through silicon nitride layers, Appl. Phys. Lett, vol. 100, no. 201104, 2012.
  25. O, M. Lisker, M. Virgilio, et al., Tensile Ge microstructures for lasing fabricated by means of a silicon complementary metal-oxide-semiconductor process, Opt. Express, vol. 22, pp. 399-410, 2014. https://doi.org/10.1364/OE.22.000399
  26. G. Capellini, G. Kozlowski, Y. Yamamoto, M. Lisker, C. Wenger, G. Niu, et al., Strain analysis in SiN/Ge microstructures obtained via Si-complementary metal oxide semiconductor compatible approach, J. Appl. Phys, vol. 113, no. 013513, 2013.
  27. A. Ghrib, M. El Kurdi, M. Prost, S. Sauvage, X. Checoury, G. Beaudoin, et al., All-Around SiN Stressor for High and Homogeneous Tensile Strain in Germanium Microdisk Cavities, Adv. Opt. Mater, vol. 3, pp. 353-358, 2015. https://doi.org/10.1002/adom.201400369
  28. D. Nam, D. Sukhdeo, S.-L. Cheng, A. Roy, K. Chih-Yao Huang, M. Brongersma, et al., Electroluminescence from strained germanium membranes and implications for an efficient Si-compatible laser, Appl. Phys. Lett, vol. 100, no. 131112, 2012.
  29. R. A. Minamisawa, M. J. Suess, R. Spolenak, J. Faist, C. David, J. Gobrecht, et al., Top-down fabricated silicon nanowires under tensile elastic strain up to 4.5%, N3at. Commun, vol. 3, no. 1096, 2012.
  30. M. J. Suess, R. Geiger, R.A. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, et al., Analysis of enhanced light emission from highly strained germanium microbridges, Nat. Photonics, vol. 7, pp. 466-472, 2013. https://doi.org/10.1038/nphoton.2013.67
  31. D. Nam, D. S. Sukhdeo, J.-H. Kang, J. Petykiewicz, J.H. Lee, W.S. Jung, et al., Strain-induced pseudoheterostructure nanowires confining carriers at room temperature with nanoscale-tunable band profiles, Nano Lett, vol. 13, pp. 3118-3123, 2013. https://doi.org/10.1021/nl401042n
  32. D. S. Sukhdeo, D. Nam, J.-H. Kang, M. L. Brongersma, K. C. Saraswat, Direct bandgap germanium-on-silicon inferred from 5.7% <100> uniaxial tensile strain, Photonics Res, vol. 2, pp. A8-A13, 2014. https://doi.org/10.1364/PRJ.2.0000A8
  33. A. Nayfeh, C. O. Chui, K. C. Saraswat, T. Yonehara, Effects of hydrogen annealing on heteroepitaxial-Ge layers on Si: Surface roughness and electrical quality, Appl. Phys. Lett, vol. 85, no. 2815, 2004.
  34. J. Petykiewicz, D. Nam, D. S. Sukhdeo, S. Gupta, S. Buckley, A. Y. Piggott, et al., Direct Bandgap Light Emission from Strained Ge Nanowires Coupled with High-Q Optical Cavities, Arxiv, 1508.01255, 2015.
  35. A. Lugstein, M. Mijic, T. Burchhart, C. Zeiner, R. Langegger, M. Schneider, et al., In situ monitoring of Joule heating effects in germanium nanowires by ${\mu}$-Raman spectroscopy, Nanotechnology, vol. 24, no. 065701, 2013.
  36. H.H. Li, Refractive index of Silicon and Germanium and its Wavelentgth and Temperature Derivatives, J. Phys. Chem. Ref. Data, vol. 9, pp. 561-658, 1980. https://doi.org/10.1063/1.555624