Browse > Article
http://dx.doi.org/10.15267/keses.2022.41.3.569

The Educational Effect of the Visualization of Heat Conduction with a Thermal Imaging Camera on Elementary School Students in Small Group Activity - Focusing on the Change of the Mental Model of Why Metal Feels Cold -  

Lee, Ga Ram (Seoul Inhun Elementary School)
Ju, Eunjeong (Seoul National University of Education)
Park, Il-Woo (Seoul National University of Education)
Publication Information
Journal of Korean Elementary Science Education / v.41, no.3, 2022 , pp. 569-591 More about this Journal
Abstract
This study aims to investigate the educational effects of the visualization of heat conduction using a thermal imaging camera on elementary school students through small group activities. It endeavors to explain the reason for why metal feels cold. The scholars conducted in-depth interviews before and after learning the unit "Temperature and Heat" for four students in fifth grade in Seoul. Recorded video and audio materials of the activities, their outputs, and journals of scholars were collected, reviewed, and analyzed. The result demonstrated that visualizing heat conduction using the thermal imaging camera aroused curiosity and provided an opportunity for sophisticated observation and integrated thinking. In addition, the visualization of the heat conduction phenomenon was used as the basis for interpretation and rebuttal for active communication during the small group activities of the students. Consequently, the students changed their non-scientific beliefs, refined their knowledge, and developed their mental models through a small group discussion based on a thermal image video.
Keywords
elementary school student; heat conduction; mental model; thermal imaging camera; visualization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 허민아, 오필석, 한문현(2019). 과학적 지식 탐색 과정에서 초등학생들의 인식적 정서와 이를 이끄는 인지적 평가 요인 탐색. 초등과학교육, 38(4), 496-509.
2 Arnheim, R. (1974). Art and visual perception: A psychology of the creative eye. Berkley: Univ of California Press.
3 Driver, R., Guesne, E., & Tiberghien, A. (Eds.). (1985). Children's idea in science. Milton Keynes, England: Open University Press.
4 Eden, C., Ackermann, F., & Cropper, S. (1992). The analysis of cause maps. Journal of Management Studies, 29(3), 309-324.   DOI
5 Eppler, M. J., & Burkhard, R. A. (2004). Knowledge Visualization: Towards a New Discipline and its Fields of Application, ICA Working Paper 2/2004, Institute for Corporate Communication, Universita della Svizzera italiana.
6 Weisberg, R. W. (2006). Creativity: Understanding innovation in problem solving, science, invention, and the arts. Hoboken, NJ: Wiley.
7 나지연, 송진웅(2012). 초등학생의 과학 담화에서 나타나는 몸짓의 유형과 특징. 초등과학교육, 31(4), 450-462.
8 양찬호, 김수현, 조민진, 노태희(2016). 물질의 입자성에 대한 모형 구성 과정에서 나타나는 소집단 토론과 전체 학급 토론의 특징. 한국과학교육학회지, 36(3), 361-369.   DOI
9 유희원, 함동철, 차현정, 김민석, 김희백, 유준희, 박현주, 김찬종, 최승언(2012). 달의 위상 변화에 대한 과학적 모형 구성 수업에서 나타나는 과학 영재들의 모형 생성 및 발달 과정. 영재교육연구, 22(2), 291-315.
10 Justi, R., & Van Driel, J. (2005). The development of science teachers' knowledge on models and modelling: Promoting, characterizing, and understanding the process. International Journal of Science Education, 27(5), 549-573.   DOI
11 안성국, 박일우(2018). 원형 캡 레이저포인터와 다색 LED 를 활용한 렌즈에 의한 빛의 굴절 실험 개발 및 적용. 현장과학교육, 12(2), 203-217.   DOI
12 박명희, 박윤복, 권용주(2005). 초등학생의 어항 관찰활동에서 나타는 관찰의 유형과 그 변화. 초등과학교육, 10(2), 175-182.
13 박정우, 유준희(2018). 소리의 전달 모형구성 수업에서 나타난 개인모형 구성 단계 중 정보의 흐름과 모둠모형 구성의 유형. 한국과학교육학회지, 38(3), 393-405.   DOI
14 문성숙, 권재술(2008). 개념구조를 이용한 인지갈등에 대한 새로운 논의. 한국과학교육학회지, 28(5), 359-382.
15 Kozma, R. (2003). The material features of multiple representations and their cognitive and social affordances for science understanding. Learning and Instruction, 13(2), 205-226.   DOI
16 Mayer, R. E. (1999). The promise of educational psychology: Learning in the content areas (Vol. 1). Upper Saddle River, NJ: Prentice Hall.
17 이가람, 박일우, 주은정(2020). 초등 저학년 학생들에게 과학 경험은 충분할까?: 초등 저학년 학생의 과학에 대한 인식과 과학 경험에 대한 사례 연구. 초등과학교육, 39(4), 475-493.
18 Lee, G. H., Shin, J. H., Park, J. Y., Song, S. H., Kim, Y. S., & Bao, L. (2005). An integrated theoretical structure of mental models: Toward understanding how students form their ideas about science. Journal of the Korean Association for Science Education, 25(6), 698-709.
19 Lee, V. R. (2010). Adaptations and continuities in the use and design of visual representations in US middle school science textbooks. International Journal of Science Education, 32(8), 1099-1126.   DOI
20 Mayer, R. E., Bove, W., Bryman, A., Mars, R., & Tapangco, L. (1996). When less is more: Meaningful learning from visual and verbal summaries of science textbook lessons. Journal of Educational Psychology, 88(1), 64.   DOI
21 Mayer, R. E., & Moreno, R. (2003). Nine ways to reduce cognitive load in multimedia learning. Educational Psychologist, 38(1), 43-52.   DOI
22 Mathewson, J. H. (1999). Visual-spatial thinking: An aspect of science overlooked by educators. Science Education, 83(1), 33-54.   DOI
23 Mehrabian, A. (2009). Nonverbal communication, New Jersey: Aldine Transaction.
24 Nisbett, R., & Ross, L. (1980). Human inference: Strategies and shortcomings of social judgment. Englewood cliffs, NJ: Prentice-Hall
25 Ohlsson, S. (1992). Information-processing explanations of insight and related phenomena. Advances in the Psychology of Thinking, 1, 1-44.
26 Paivio, A. (1986). Mental representations: A dual-coding approach. NY: Oxford University Press.
27 Chittleborough, G. D., Treagust, D. F., Mamiala, T. L., & Mocerino, M. (2005). Students' perceptions of the role of models in the process of science and in the process of learning. Research in Science & Technological Education, 23(2), 195-212.   DOI
28 Rapp, D. N. (2005). Mental models: Theoretical issues for visualizations in science education. In J. K. Gilbert (Eds.), Visualization in science education (pp. 43-60). Netherlands: Springer.
29 Chiou, G. L., & Anderson, O. R. (2009). A study of undergraduate physics students' understanding of heat conduction based on mental model theory and an ontology-process analysis. Science Education, 94(5), 825-854.   DOI
30 Chiou, G. L. (2013). Reappraising the relationships between physics students' mental models and predictions: An example of heat convection. Physical Review Special Topics-Physics Education Research, 9(1), 1-15.   DOI
31 Cook, M. P. (2006). Visual representations in science education: The influence of prior knowledge and cognitive load theory on instructional design principles. Science Education, 90(6), 1073-1091.   DOI
32 Corbin, J., & Strauss, A. (2014). Basics of qualitative research: Techniques and procedures for developing grounded theory. CA, US: Sage publications.
33 Tomkins, S. P., & Tunnicliffe, S. D. (2001). Looking for ideas: observation, interpretation and hypothesismaking by 12-year-old pupils undertaking science investigations. International Journal of Science Education, 23(8), 791-813.   DOI
34 이경민(2016). 통찰 발생과정에 있어 막다른 골목과 재구조화의 기능에 대한 고찰. 창의력교육연구, 16(3), 1-15.
35 이선경(2015). 과학학습 개념변화. 서울: 서울대학교출판문화원.
36 Roth, W. M., Bowen, G. M., & McGinn, M. K. (1999). Differences in graph-related practices between high school biology textbooks and scientific ecology journals. Journal of Research in Science Teaching, 36(9), 977-1019.   DOI
37 Sampson, V., & Clark, D. (2009). The impact of collaboration on the outcomes of scientific argumentation. Science Education, 93(3), 448-484.   DOI
38 Schnotz, W. (2002). Commentary: Towards an integrated view of learning from text and visual displays. Educational Psychology Review, 14(1), 101-120.   DOI
39 Toulmin, S. E. (2006). 논변의 사용(The Uses of Argumentation). (고현범.임건태 역). 서울: 고려대학교출판부. (원서 출판 2003).
40 Van Helden, A. (1977). The invention of the telescope. Transactions of the American Philosophical Society, 67(4), 1-67.   DOI
41 Von Aufschnaiter, C., Erduran, S., Osborne, J., & Simon, S. (2008). Arguing to learn and learning to argue: Case studies of how students' argumentation relates to their scientific knowledge. Journal of Research in Science Teaching, 45(1), 101-131.   DOI
42 Vosniadou, S., & Brewer, W. F. (1994). Mental models of the day/night cycle. Cognitive Science, 18(1), 123-183.   DOI
43 Vygotsky, L. (1978). Interaction between learning and development. Readings on the Development of Children, 23(3), 34-41.
44 Ezquerra, A., & Ezquerra-Romano, I. (2018). From Thermosensation to the Concepts of Heat and Temperature: A Possible Neuroscientific Component. Eurasia Journal of Mathematics, Science and Technology Education, 14(12).
45 Hoffman, D. D. (2000). Visual intelligence: How we crea te wha t we see. NY: W.W. Norton & Company.
46 이정희(2009). 근대과학에서 시각적 재현의 의미. 철학논총, 55, 299-322.
47 Galison, P. (1997). Image and logic: A material culture of microphysics. Chicago: University of Chicago Press.
48 Gilbert, J. K., Boulter, C., & Rutherford, M. (1998). Models in explanations, Part 1: Horses for courses. International Journal of Science Education, 20(1), 83-97.   DOI
49 Gilbert, J. K. (2004). Models and modelling: Routes to more authentic science education. International Journal of Science and Mathematics Education, 2(2), 115-130.   DOI
50 Harrison, A. G., Grayson, D. J., & Treagust, D. F. (1999). Investigating a grade 11 student's evolving conceptions of heat and temperature. Journal of Research in Science Teaching, 36(1), 55-87.   DOI
51 Hynd, C., & Guzzetti, B. J. (1998). When knowledge contradicts intuition: Conceptual change. In C. Hynd (Eds.), Learning from text across conceptual domains (pp. 139-164). Mahwah, NJ: LEA.
52 Jacobson, R. (1999). Information design. Boston, MA: MIT Press.
53 Jordan, B., & Henderson, A. (1995). Interaction analysis: Foundations and practice. The journal of the Learning Sciences, 4(1), 39-103.   DOI
54 Justi, R. S., & Gilbert, J. K. (2002). Modelling, teachers' views on the nature of modelling, and implications for the education of modellers. International Journal of Science Education, 24(4), 369-387.   DOI