• 제목/요약/키워드: Therapeutic candidate

검색결과 270건 처리시간 0.024초

새로운 11β-HSD1 저해제인 KR-67500의 약물동태 (Pharmacokinetic Characterization of KR-67500, a Novel 11β-HSD1 Inhibitor)

  • 임소희;안진희;김기영;배명애;김상겸;안성훈
    • 약학회지
    • /
    • 제59권2호
    • /
    • pp.59-65
    • /
    • 2015
  • KR-67500, trans-4-(2-(4-methyl-1,1-dioxido-6-(2,4,6-trichlorophenyl)-1,2,6-thiadiazinan-2-yl)acetamido)adamantane-1-carboxamide, is a novel $11{\beta}$-HSD1 inhibitor with its therapeutic effects of its anti-diabetic, anti-adipogenic and anti-osteoporotic activity. This study was performed to evaluate in vitro and in vivo pharmacokinetic properties of KR-67500 as a new drug candidate. KR-67500 was stable and highly bound to proteins in rat plasma. The microsomal stabilities of KR-67500 in human and rat liver were high. The inhibitory effect of KR-67500 for five cytochrome P450 enzymes was low. Preclinical pharmacokinetic studies have been carried out with intravenous or oral administrations of KR-67500 (10 mg/kg) to male rats and monkey. KR-67500 showed low clearance (0.68 l/h/kg) and high oral bioavailability (102%) in male rats. These results suggest that KR-67500 has good drug-like pharmacokinetic properties with a low first-pass effect and high bioavailability for an oral therapeutic agent of diabetes and osteoporosis.

Asunaprevir, a Potent Hepatitis C Virus Protease Inhibitor, Blocks SARS-CoV-2 Propagation

  • Lim, Yun-Sook;Nguyen, Lap P.;Lee, Gun-Hee;Lee, Sung-Geun;Lyoo, Kwang-Soo;Kim, Bumseok;Hwang, Soon B.
    • Molecules and Cells
    • /
    • 제44권9호
    • /
    • pp.688-695
    • /
    • 2021
  • The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has become a global health concern. Various SARS-CoV-2 vaccines have been developed and are being used for vaccination worldwide. However, no therapeutic agents against coronavirus disease 2019 (COVID-19) have been developed so far; therefore, new therapeutic agents are urgently needed. In the present study, we evaluated several hepatitis C virus direct-acting antivirals as potential candidates for drug repurposing against COVID-19. Theses include asunaprevir (a protease inhibitor), daclatasvir (an NS5A inhibitor), and sofosbuvir (an RNA polymerase inhibitor). We found that asunaprevir, but not sofosbuvir and daclatasvir, markedly inhibited SARS-CoV-2-induced cytopathic effects in Vero E6 cells. Both RNA and protein levels of SARS-CoV-2 were significantly decreased by treatment with asunaprevir. Moreover, asunaprevir profoundly decreased virion release from SARS-CoV-2-infected cells. A pseudoparticle entry assay revealed that asunaprevir blocked SARS-CoV-2 infection at the binding step of the viral life cycle. Furthermore, asunaprevir inhibited SARS-CoV-2 propagation in human lung Calu-3 cells. Collectively, we found that asunaprevir displays broad-spectrum antiviral activity and therefore might be worth developing as a new drug repurposing candidate for COVID-19.

Predictors of intentional intoxication using decision tree modeling analysis: a retrospective study

  • Oh, Eun Seok;Choi, Jae Hyung;Lee, Jung Won;Park, Su Yeon
    • Clinical and Experimental Emergency Medicine
    • /
    • 제5권4호
    • /
    • pp.230-239
    • /
    • 2018
  • Objective The suicide rate in South Korea is very high and is expected to increase in coming years. Intoxication is the most common suicide attempt method as well as one of the common reason for presenting to an emergency medical center. We used decision tree modeling analysis to identify predictors of risk for suicide by intentional intoxication. Methods A single-center, retrospective study was conducted at our hospital using a 4-year registry of the institute from January 1, 2013 to December 31, 2016. Demographic factors, such as sex, age, intentionality, therapeutic adherence, alcohol consumption, smoking status, physical disease, cancer, psychiatric disease, and toxicological factors, such as type of intoxicant and poisoning severity score were collected. Candidate risk factors based on the decision tree were used to select variables for multiple logistic regression analysis. Results In total, 4,023 patients with intoxication were enrolled as study participants, with 2,247 (55.9%) identified as cases of intentional intoxication. Reported annual percentages of intentional intoxication among patients were 628/937 (67.0%), 608/1,082 (56.2%), 536/1,017 (52.7), 475/987 (48.1%) from 2013 to 2016. Significant predictors identified based on decision tree analysis were alcohol consumption, old age, psychiatric disease, smoking, and male sex; those identified based on multiple regression analysis were alcohol consumption, smoking, male sex, psychiatric disease, old age, poor therapeutic adherence, and physical disease. Conclusion We identified important predictors of suicide risk by intentional intoxication. A specific and realistic approach to analysis using the decision tree modeling technique is an effective method to determine those groups at risk of suicide by intentional intoxication.

Therapeutic effects of stiripentol against ischemia-reperfusion injury in gerbils focusing on cognitive deficit, neuronal death, astrocyte damage and blood brain barrier leakage in the hippocampus

  • Shin, Myoung Cheol;Lee, Tae-Kyeong;Lee, Jae-Chul;Kim, Hyung Il;Park, Chan Woo;Cho, Jun Hwi;Kim, Dae Won;Ahn, Ji Hyeon;Won, Moo-Ho;Lee, Choong-Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제26권1호
    • /
    • pp.47-57
    • /
    • 2022
  • Stiripentol is an anti-epileptic drug for the treating of refractory status epilepticus. It has been reported that stiripentol can attenuate seizure severity and reduce seizure-induced neuronal damage in animal models of epilepsy. The objective of the present study was to investigate effects of post-treatment with stiripentol on cognitive deficit and neuronal damage in the cornu ammonis 1 (CA1) region of the hippocampus proper following transient ischemia in the forebrain of gerbils. To evaluate ischemia-induced cognitive impairments, passive avoidance test and 8-arm radial maze test were performed. It was found that post-treatment with stiripentol at 20 mg/kg, but not 10 or 15 mg/kg, reduced ischemia-induced memory impairment. Transient ischemia-induced neuronal death in the CA1 region was also significantly attenuated only by 20 mg/kg stiripentol treatment after transient ischemia. In addition, 20 mg/kg stiripentol treatment significantly decreased ischemia-induced astrocyte damage and immunoglobulin G leakage. In brief, stiripentol treatment after transient ischemia ameliorated transient ischemia-induced cognitive impairment in gerbils, showing that pyramidal neurons were protected and astrocyte damage and blood brain barrier leakage were significantly attenuated in the hippocampus. Results of this study suggest stiripentol can be developed as a candidate of therapeutic drug for ischemic stroke.

Novel Anti-Mesothelin Nanobodies and Recombinant Immunotoxins with Pseudomonas Exotoxin Catalytic Domain for Cancer Therapeutics

  • Minh Quan Nguyen;Do Hyung Kim;Hye Ji Shim;Huynh Kim Khanh Ta;Thi Luong Vu;Thi Kieu Oanh Nguyen;Jung Chae Lim;Han Choe
    • Molecules and Cells
    • /
    • 제46권12호
    • /
    • pp.764-777
    • /
    • 2023
  • Recombinant immunotoxins (RITs) are fusion proteins consisting of a targeting domain linked to a toxin, offering a highly specific therapeutic strategy for cancer treatment. In this study, we engineered and characterized RITs aimed at mesothelin, a cell surface glycoprotein overexpressed in various malignancies. Through an extensive screening of a large nanobody library, four mesothelin-specific nanobodies were selected and genetically fused to a truncated Pseudomonas exotoxin (PE24B). Various optimizations, including the incorporation of furin cleavage sites, maltose-binding protein tags, and tobacco etch virus protease cleavage sites, were implemented to improve protein expression, solubility, and purification. The RITs were successfully overexpressed in Escherichia coli, achieving high solubility and purity post-purification. In vitro cytotoxicity assays on gastric carcinoma cell lines NCI-N87 and AGS revealed that Meso(Nb2)-PE24B demonstrated the highest cytotoxic efficacy, warranting further characterization. This RIT also displayed selective binding to human and monkey mesothelins but not to mouse mesothelin. The competitive binding assays between different RIT constructs revealed significant alterations in IC50 values, emphasizing the importance of nanobody specificity. Finally, a modification in the endoplasmic reticulum retention signal at the C-terminus further augmented its cytotoxic activity. Our findings offer valuable insights into the design and optimization of RITs, showcasing the potential of Meso(Nb2)-PE24B as a promising therapeutic candidate for targeted cancer treatment.

The effect of baicalin in a mouse model of retinopathy of prematurity

  • Jo, Hyoung;Jung, Sang Hoon;Yim, Hye Bin;Lee, Sung Jin;Kang, Kui Dong
    • BMB Reports
    • /
    • 제48권5호
    • /
    • pp.271-276
    • /
    • 2015
  • Baicalin is a flavonoid derived from the dried root of Scutellaria baicalensis. In this study, oxygen-induced retinopathy was used to characterize the anti-angiogenic properties of baicalin in mice. Pups were exposed to a hyperbaric oxygen environment to induce retinal angiogenesis and were subjected to intraperitoneal injection of baicalin. Avascular area, neovascular tufts, and neovascular lumens were quantified from digital images. Compared to the vehicle, baicalin clearly reduced the central avascular zone and the number of neovascular tufts and lumens. High-dose baicalin (10 mg/kg) significantly reduced the expression of matrix metalloproteinase-2 (MMP-2), MMP-9, angiotensin II, and vascular endothelial growth factor (VEGF). These results show that baicalin is a powerful antiangiogenic compound that attenuates new vessel formation in the retina after systemic administration, and is a candidate substance for therapeutic inhibition of retinal angiogenesis. [BMB Reports 2015; 48(5): 271-276]

Anti-inflammatory functions of purpurogallin in LPS-activated human endothelial cells

  • Kim, Tae-Hoon;Ku, Sae-Kwang;Lee, In-Chul;Bae, Jong-Sup
    • BMB Reports
    • /
    • 제45권3호
    • /
    • pp.200-205
    • /
    • 2012
  • Enzymatic oxidation of commercially available pyrogallol was efficiently transformed to an oxidative product, purpurogallin. Purpurogallin plays an important role in inhibiting glutathione S-transferase, xanthine oxidase, catechol O-methyltransferase activities and is effective in the cell protection of several cell types. However, the anti-inflammatory functions of purpurogallin are not well studied. Here, we determined the effects of purpurogallin on lipopolysaccharide (LPS)-mediated proinflammatory responses. The results showed that purpurogallin inhibited LPS-mediated barrier hyper-permeability, monocyte adhesion and migration and such inhibitory effects were significantly correlated with the inhibitory functions of purpurogallin on LPS-mediated cell adhesion molecules (vascular cell adhesion molecules, intracellular cell adhesion molecule, E-selectin). Furthermore, LPS-mediated nuclear factor-${\kappa}B$ (NF-${\kappa}B$) and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) releases from HUVECs were inhibited by purpurogallin. Given these results, purpurogallin showed its anti-inflammatory activities and could be a candidate as a therapeutic agent for various systemic inflammatory diseases.

Adoptive Cell Therapy of Melanoma with Cytokine-induced Killer Cells

  • Kim, Ji Sung;Kim, Yong Guk;Pyo, Minji;Lee, Hong Kyung;Hong, Jin Tae;Kim, Youngsoo;Han, Sang-Bae
    • IMMUNE NETWORK
    • /
    • 제15권2호
    • /
    • pp.58-65
    • /
    • 2015
  • Melanoma is the most aggressive skin cancer and its incidence is gradually increasing worldwide. Patients with metastatic melanoma have a very poor prognosis (estimated 5-year survival rate of <16%). In the last few years, several drugs have been approved for malignant melanoma, such as tyrosine kinase inhibitors and immune checkpoint blockades. Although new therapeutic agents have improved progression-free and overall survival, their use is limited by drug resistance and drug-related toxicity. At the same time, adoptive cell therapy of metastatic melanoma with tumor-infiltrating lymphocytes has shown promising results in preclinical and clinical studies. In this review, we summarize the currently available drugs for treatment of malignant melanoma. In addition, we suggest cytokine-induced killer (CIK) cells as another candidate approach for adoptive cell therapy of melanoma. Our preclinical study and several previous studies have shown that CIK cells have potent anti-tumor activity against melanomas in vitro and in an in vivo human tumor xenograft model without any toxicity.

Microarray and Next-Generation Sequencing to Analyse Gastric Cancer

  • Dang, Yuan;Wang, Ying-Chao;Huang, Qiao-Jia
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권19호
    • /
    • pp.8035-8040
    • /
    • 2014
  • Gastric cancer is the second after lung cause of cancer-related mortality in the world. Early detection and treatment can lead to a long survival time. Recently microarrays and next generation sequencing (NGS) have become very useful tools of comprehensive research into gastric cancer, facilitating the identification of treatment targets and personalized treatments. However, there are numerous challenges from cancer target discovery to practical clinical benefits. Although there are many biomarkers and target agents, only a minority of patients are tested and treated accordingly. Microarray technology with maturity was established more than 10 years ago, and has been widely used in the study of functional genomics, systems biology, and genomes in medicine. Second generation sequencing technology is more recent, but development is very fast, and it has been applied to the genome, including sequencing and epigenetics and many aspects of functional genomics. Here we review insights gained from these studies regarding the technology of microarray and NGS, how to elucidate the molecular basis of gastric cancer and identify potential therapeutic targets, and how to analyse candidate genes. We also discuss the challenges and future directions of such efforts.

해조류 추출물이 섬유아세포의 증식에 미치는 영향 (Cell proliferation effect of brown marine algae extracts on Mouse Fibroblast)

  • 고주영;이지혁;김현수;김형호;전유진
    • 한국해양바이오학회지
    • /
    • 제7권1호
    • /
    • pp.28-34
    • /
    • 2015
  • We examined cell regeneration efficiency of brown marine algae living in Jeju coast for search of a novel therapeutic device with cutaneous wound healing materials. The five algae were collected and compared with epidermal growth factor (EGF) as a positive control in the assays of cell proliferation and cell migration of NIH3T3 fibroblast cells. Among the 80% methanol extracts of these brown algae, the two algal extracts from Ishige foliacea and Colpomenia bullosa showed the proliferative effects of the cells similar to the effect of EGF. Besides it was found that Colpomenia bullosa extract significantly enhanced cell migration of NIH3T3 cell. In the study, therefore, we confirmed that the Colpomenia bullosa extract improved proliferation of NIH3T3 cell and a potential candidate for cultaneous wound healing.