• 제목/요약/키워드: The largest pore size

검색결과 22건 처리시간 0.025초

Effects of the Pore Size of Graphite on the Mechanical Properties and Permeability of a Porous Nozzle for Continuous Casting Process

  • Cho, Yong-Ho;Kim, Juyoung;Yoon, Sanghyeon;Lee, Heesoo
    • 대한금속재료학회지
    • /
    • 제49권7호
    • /
    • pp.530-534
    • /
    • 2011
  • To analyze the effect of the pore size of graphite in a pore-forming agent, graphite was added to porous ceramics of $Al_2O_3-SiO_2-ZrO_2$ systems. The graphite had 45~75, 100~125, 150~180, and 75~180${\mu}m$ dimensions. The properties of the ceramics, such as apparent porosity, density, dynamic elastic modulus, mechanical strength, and permeability, were investigated. The average pore size increased from 15.35${\mu}m$ to 22.32${\mu}m$ with the increase of the graphite size. The sample with the largest average pore size showed the highest mechanical strength and gas permeability. This was due to the sample with the largest pore size at the same porosity having fewer pores and larger distance between the pores than the sample with the smallest pore size, making cracks less likely to propagate. In addition, the large pore size reduced the repulsive power originating from the drag force between the gas and internal pore walls.

Cordierite의 기공률 및 기공경조절에 관한 연구 (Studies on the Control of Porosity and Mean Pore Size in Cordierite Ceramics)

  • 양진
    • 한국세라믹학회지
    • /
    • 제35권4호
    • /
    • pp.399-405
    • /
    • 1998
  • The effect of each factor on the porosity and mean pore size of cordierite(2Mg$.$2{{{{ {Al}_{2 } {O }_{3 } }}$.$5{{{{ {SiO}_{2 } }}) ceram-ics which have been mainly used for hot gas filter was investigated by using orthogonal array. The poros-ity was observed to increase with the content of graphite added as pore-forming material and decrease with increasing talc size. The effects of the other factors the graphite size sintering temperature and hold-ing time at sintering temperature were observed to be small relatively. In case of mean pore size the ef-fect of talc size on the mean pore size of cordierity was investigated to be the largest. The mean pore size was observed to increase with increasing talc size.

  • PDF

Thermal Shock Behavior of Porous Nozzles with Various Pore Sizes for Continuous Casting Process

  • Kim, Ju-Young;Yoon, Sang-Hyeon;Kim, Yoon-Ho;Lee, Hee-Soo
    • 한국세라믹학회지
    • /
    • 제48권6호
    • /
    • pp.617-620
    • /
    • 2011
  • Thermal shock behavior of porous ceramic nozzles with various pore sizes for continuous casting process of steel was investigated in terms of physical properties and microstucture. Porous nozzle samples with a composition of $Al_2O_3$-$SiO_2$-$ZrO_2$ were fabricatedby adding various sizes of graphite as the pore forming agent. As the graphite size increased from 45~75 to 150~180 ${\mu}m$, both the resulting pore size and the flexural strength also increased. A thermal shock test was carried out at temperatures (${\Delta}$T) of 600, 700, 800, and 900$^{\circ}C$. Microstructure analysis revealed a small number of cracks on the sample with the largest mean pore size of 22.32 ${\mu}m$. In addition, increasing the pore size led to a smaller decrease in both pressure drop and elastic modulus. In conclusion, controlling the pore size can enhance thermal shock behavior.

A Novel Technoque for Characterization of Membranes

  • Webber, Ronald;Jena, Akshaya;Gupta, Krishna
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 2001년도 제14회 심포지엄 : 제2회 분리막 표준화(The 2nd Standardization of Membranes)
    • /
    • pp.39-50
    • /
    • 2001
  • The performance of membranes is governed their pore struture. Pore structures of porous materials can be determined by a number of techniques. However, The novel technique, capillary folw porometry has a number of advantages. In this technique, the sample is brought in contact with a liquid that fills the pores in the membrane spontaneously. Gas under pressure is used to force the liquid from the pores and increase gas flow. Gas flow rate measured as a function of gas pressure in wet and dry samples yield data on the largest pore size, the mean flow pore size, flow distribution and permeability. Pore characteristics of a number of membranes were measured using this technique. This technique did not require the use of any toxic material and the pressure employed was low. Capillary flow porometry is a suitable technique for measurement of the pore structure of many membranes.

  • PDF

PVA-Al(III) 착물이 UO$_2$ 소결체의 기공형성과 결정립성장에 미치는 영향(I) (The Effect of PVA-Al(III) Complex on the Pore Formation and Grain Growth of UO$_2$ Sintered Pellet)

  • 이신영;김형수;노재성
    • 한국세라믹학회지
    • /
    • 제35권8호
    • /
    • pp.783-790
    • /
    • 1998
  • The characterization of the complexation reaction of PVA and Al(III) ion at different pH and the sint-ering behaviour of UO2 containing the PVA-Al(III) complexes were investigated. Compared with pure PVA powder the complexed PVA-Al(III) powder had compacter shape and lower decomposition temperature The major phase of PVA-Al(III) complex decomposed at 90$0^{\circ}C$ was $\alpha$-Al2O3 The PVA-Al(III) complex formed at pH 9 had the lowest relative viscosity the highest Al content of 36% and the smallest particle size of 19${\mu}{\textrm}{m}$ While the pure UO2 pellet appeared with bimodal one. The grain size of the pure UO2 pellet was 7${\mu}{\textrm}{m}$ but that of the PVA-Al(III) complex added UO2 pellet was increased up to 36${\mu}{\textrm}{m}$ The largest grain size was ob-tained when the PVA-Al(III) complex formed at pH9 was added and the PVA-Al(III) complex formed at pH 11 had the greatest effect on increasing pore size.

  • PDF

압출공정에 의한 수 처리용 평관형알루미나 필터의 미세구조와 특성평가 (Characterization and Microstructure of an Extruded Flat-Tubular-Type Alumina Filter)

  • 배병서;하장훈;송인혁
    • 한국세라믹학회지
    • /
    • 제51권5호
    • /
    • pp.406-412
    • /
    • 2014
  • In this study, flat-tubular-type alumina filters were manufactured using alumina powder of two sizes ($2.4{\mu}m$ ALM-44 and $0.4{\mu}m$ AP 400) by an extrusion process. The manufactured alumina filter was sintered at $1200-1600^{\circ}C$ for 1 h. As particle size increased, the largest pore size, average pore size and porosity increased; but density and linear shrinkage decreased. The alumina filter fabricated using ALM-44 powder sintered at $1500^{\circ}C$ was confirmed as the best water treatment filter after investigation of the bending strength, water permeability and impurity-removal efficiency of the experimental filters. This flat-tubular-type alumina filter is expected to be useful not only for direct water treatment, but also for use as a support filter during coating processes, to control pore size.

실리카 분말이 코팅된 수처리용 규조토계 세라믹 필터의 특성평가 (Characterization of the Silica Coated Diatomite Based Ceramic Filter for Water Treatment)

  • 배병서;하장훈;송인혁;한유동
    • 한국분말재료학회지
    • /
    • 제21권1호
    • /
    • pp.21-27
    • /
    • 2014
  • In this study, diatomite based materials were investigated as a support filter for silica particle coating. The silica sol for coating was synthesized by a st$\ddot{o}$ber process. The diatomite support was dry-pressed at 10 MPa and sintered at $1200^{\circ}C$ for 1 hour. The coating sol was prepared as a mixture of EtOH and silica sol. The diatomite support was coated by a dip-coating process. Silica coated diatomite filter was sintered at $1000{\sim}1200^{\circ}C$ for 1 hour. The largest pore size was decreased with increasing concentration ratio of coating sol. The gas and water permeability of silica coated diatomite decreased with increasing of concentration ratio of the coating sol.

Fragmentation and energy absorption characteristics of Red, Berea and Buff sandstones based on different loading rates and water contents

  • Kim, Eunhye;Garcia, Adriana;Changani, Hossein
    • Geomechanics and Engineering
    • /
    • 제14권2호
    • /
    • pp.151-159
    • /
    • 2018
  • Annually, the global production of construction aggregates reaches over 40 billion tons, making aggregates the largest mining sector by volume and value. Currently, the aggregate industry is shifting from sand to hard rock as a result of legislation limiting the extraction of natural sands and gravels. A major implication of this change in the aggregate industry is the need for understanding rock fragmentation and energy absorption to produce more cost-effective aggregates. In this paper, we focused on incorporating dynamic rock and soil mechanics to understand the effects of loading rate and water saturation on the rock fragmentation and energy absorption of three different sandstones (Red, Berea and Buff) with different pore sizes. Rock core samples were prepared in accordance to the ASTM standards for compressive strength testing. Saturated and dry samples were subsequently prepared and fragmented via fast and dynamic compressive strength tests. The particle size distributions of the resulting fragments were subsequently analyzed using mechanical gradation tests. Our results indicate that the rock fragment size generally decreased with increasing loading rate and water content. In addition, the fragment sizes in the larger pore size sample (Buff sandstone) were relatively smaller those in the smaller pore size sample (Red sandstone). Notably, energy absorption decreased with increased loading rate, water content and rock pore size. These results support the conclusion that rock fragment size is positively correlated with the energy absorption of rocks. In addition, the rock fragment size increases as the energy absorption increases. Thus, our data provide insightful information for improving cost-effective aggregate production methods.

분무열분해공정에 의한 메조기공 알루미나 제조에 있어 Al 전구체 영향 (Effect of Al Precursor Type on Mesoporous Alumina Particles Prepared by Spray Pyrolysis)

  • 김주현;정경열;박균영
    • 한국분말재료학회지
    • /
    • 제17권3호
    • /
    • pp.209-215
    • /
    • 2010
  • Mesoporous alumina particles were prepared by spray pyrolysis using cetyltrimethyl-ammonium bromide (CTAB) as a structure directing agent and the effect of Al precursor types on the texture properties was studied using $N_2$ adsorption isotherms, small-angle X-ray scattering (SAXS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The surface area and the microstructure of alumina particles were significantly influenced by the Al precursor type. The largest BET surface area was obtained when Al chloride was used, whereas alumina particles prepared from Al acetate had the largest pore volume. According to small-angle X-ray scattering (SAXS) analysis, the alumina powders prepared using nitrate and acetate precursors had a clear single SAXS peak around $2{\theta}=1.0{\sim}1.5^{\circ}$, indicating that regular mesopores with sponge-like structure were produced. On the basis of TEM, SAXS, and $N_2$ isotherm results, the chloride precursor was most profitable to obtain the largest surface area ($265\;m^2/g$), whereas, the nitrate precursor is useful for the preparation of non-hollow mesoporous alumina with regular pore size, maintaining high surface area (${\sim}233\;m^2/g$).

Effect of $Nb_2O_5$ and $UO_2$ Powder Types on Sintered Density and Grain Size of the $UO_2$ Pellet

  • Yoo, Ho-Sik;Kim, Hyung-Soo
    • Nuclear Engineering and Technology
    • /
    • 제29권3호
    • /
    • pp.196-200
    • /
    • 1997
  • The variation of sintered density and fain size in ex-AUC, ex-ADU and granulated ex-ADU UO$_2$ pellets in which 0.1~1.0wt% Nb$_2$O$_{5}$ were doped were examined. Pellets were sintered in an atmosphere of H$_2$ at 1$700^{\circ}C$ for 4h. All the specimens tested shooed more than 94% T.D.(Theoretical Density). Sintered density decreased with increasing the amount of Nb$_2$O$_{5}$. Powder types had little influence on the sintered density. Pore size distribution was shifted to the larger ones as Nb$_2$O$_{5}$ was added. The increase of total pore volume and grain growth due to the addition of Nb$_2$O$_{5}$ were thought to be the cause of the sintered density decrease. The largest grain size was seen in the 1. 0wt% Nb$_2$O$_{5}$ doped ex-AUC UO$_2$ pellets. Their average size was 13.9 ${\mu}{\textrm}{m}$.m}$.

  • PDF