Browse > Article
http://dx.doi.org/10.3365/KJMM.2011.49.7.530

Effects of the Pore Size of Graphite on the Mechanical Properties and Permeability of a Porous Nozzle for Continuous Casting Process  

Cho, Yong-Ho (School of Materials Science & Engineering, Pusan National University)
Kim, Juyoung (School of Materials Science & Engineering, Pusan National University)
Yoon, Sanghyeon (School of Materials Science & Engineering, Pusan National University)
Lee, Heesoo (School of Materials Science & Engineering, Pusan National University)
Publication Information
Korean Journal of Metals and Materials / v.49, no.7, 2011 , pp. 530-534 More about this Journal
Abstract
To analyze the effect of the pore size of graphite in a pore-forming agent, graphite was added to porous ceramics of $Al_2O_3-SiO_2-ZrO_2$ systems. The graphite had 45~75, 100~125, 150~180, and 75~180${\mu}m$ dimensions. The properties of the ceramics, such as apparent porosity, density, dynamic elastic modulus, mechanical strength, and permeability, were investigated. The average pore size increased from 15.35${\mu}m$ to 22.32${\mu}m$ with the increase of the graphite size. The sample with the largest average pore size showed the highest mechanical strength and gas permeability. This was due to the sample with the largest pore size at the same porosity having fewer pores and larger distance between the pores than the sample with the smallest pore size, making cracks less likely to propagate. In addition, the large pore size reduced the repulsive power originating from the drag force between the gas and internal pore walls.
Keywords
porous materials; powder processing; mechanical properties; image analysis; gas permeability;
Citations & Related Records

Times Cited By SCOPUS : 1
연도 인용수 순위
1 G. J. Zhang, J.F. Yang, and Tatsuki Ohji, J. Am. Ceram. Soc. 84, 1395 (2001).
2 F. Tang, H. Fudouzi, T. Uchikoshi, and Y. Sakka, J. Eur. Ceram. Soc. 24, 341 (2004).   DOI   ScienceOn
3 K. Maca, P. Dobsak, and A.R. Boccaccini, Ceram. Int. 27, 577 (2001).   DOI   ScienceOn
4 O. Lyckfeldt and J. M. K. Ferreira, J. Eur. Ceram. Soc. 18, 131 (1998).   DOI   ScienceOn
5 C. Yuan, L. J. Vandeperre, R. J. Stearn, and W. J. Clegg, J. Mater. Sci. 43, 4099 (2008).   DOI   ScienceOn
6 V. A. Mozhzherin, V. Ya. Sakulin, V. P. Migal, A. P. Margishvili, and A. A. Konstantinov, Refract. Ind. Ceram. 49, 4 (2008).
7 J. K. Brimacombe and K. Sorimachi, Metall. Trans. B. 8B, 489 (1977).
8 G. M. Evans, G. D. Rigby, T. A. Honeyands, and Q. L. He, Chem. Eng. Sci. 54, 4861 (1999).   DOI   ScienceOn
9 K. Ishizaki, S. komarneni, and M. Nanko, Porous Materials, p. 202-224, Kluwer Academic Publishers, Netherlands (1998).
10 Z. Zivcova, E. Gregorova, and W. Pabst, J. Mater. Sci. 42, 8760 (2007).   DOI   ScienceOn
11 S. H. Yoon, D. H. Jeong, M. K. Cho, and H. S. Lee, Kor. J. Met. Mater. 48, 625 (2010).
12 Rice, R. W., J. Mater. Sci. 28, 2187 (1993).   DOI   ScienceOn
13 Kingery, W.D., Bowen, H. K., and Uhlman, D. R., Introduction to ceramics(2nd ed.), p. 768-815, John Wiley and Sons, New York, (1976).
14 N. Shinohara, M. okumiya, T. Hotta, K. Nakahira, M. Naito, and K. Uematsu, J. Eur. Ceram. Soc. 20, 843 (2000).   DOI   ScienceOn
15 E. Gregorova and W. Pabst, J. Eur. Ceram. Soc. 27, 669 (2007).   DOI   ScienceOn
16 J. T. Richardson, Y. Peng, and D. Remue, Appl. Catal. AGen. 204, 19 (2000).   DOI   ScienceOn
17 L. Shen, M. Liu, X. Liy, and BoLi, Mater. Res. Bull. 42, 2048 (2007).   DOI   ScienceOn
18 M. C. Shin, J. S. Cha, J. H. Lee, S. H. Lee, and H. S. Lee, Key Eng. Mater. 317-318, 465 (2006).   DOI