• Title/Summary/Keyword: The gifted

Search Result 2,014, Processing Time 0.029 seconds

Analysis of the Scientific Research Process of a Participant in Undergraduate Research Program by Cultural Historical Activity Theory (문화역사적 활동이론을 통한 학부생 연구지원 프로그램 참여자의 과학연구 수행과정의 분석)

  • Lee, Jiwon
    • Journal of The Korean Association For Science Education
    • /
    • v.38 no.3
    • /
    • pp.343-354
    • /
    • 2018
  • In this study, the first experience of the whole research process of a novice scientist (student A) who participated in the Undergraduate Research Program (URP) was analyzed. The data were collected through observation, interviews, and document analysis with the cultural historical activity theory being used as a theoretical lens. At the beginning of novice's research, the mentor guided him in setting a research goal and provided mediating artifacts. Student A formed a research team based on the vertical relationship without a shared mental model. Two major contradictions occurred and they were the sources of changes of student A's activity system. The first contradiction was between the mentor's educational philosophy and the mentee's educational needs, which was resolved in a way that student A asked and used the mentor's network to obtain his needs about task-specific details. The second contradiction arose because the team members wanted horizontal relationship while student A wanted to stick to the vertical relationship. After student A accepted the opinions of the team members, they cooperatively changed the division of labor in the activity system. Student A decided to become a scientist and not a physics teacher, even if his major is physics education after finishing his URP research process. His URP experience also created and expanded his network in the academic field, and his negative attitude toward collaboration changed positively. Through the analysis of the structure and changes in the activity system of URP research, implications for instructional method and support system of the apprenticeship can be obtained.

Analysis of Explanations and Examples of the Brønsted-Lowry Model Presented in Chemistry Textbooks Developed by 2009 Revised Curriculum (2009 개정교육과정의 화학교과서에 제시된 Brønsted-Lowry 모델에 관한 설명과 예시의 문제점 분석)

  • Choi, Hee;Park, Chul-Yong;Kim, Sungki;Paik, Seoung-Hey
    • Journal of the Korean Chemical Society
    • /
    • v.62 no.4
    • /
    • pp.279-287
    • /
    • 2018
  • In this study, we analyzed the explanations and examples of Brønsted-Lowry model in Chemistry I and Chemistry II textbooks of the 2009 revised curriculum. In particular, the definition of the Brønsted-Lowry model, the examples, and the content of experiments were analyzed by the process perspective of chemical equilibrium, emergent process. The analyzed textbooks were 4 kinds of Chemistry I textbooks and 4 kinds of Chemistry II textbooks in 2009 revision curriculum. As a result, Chemical I textbooks did not adequately show the chemical equilibrium viewpoint when explaining the Brønsted-Lowry model. In the Chemistry II textbooks, the examples of Brønsted-Lowry model were not present emergent process viewpoint, and those were described as sequential viewpoint of Arrhenius model. In addition, examples of experiments to demonstrate the Brønsted-Lowry model of Chemistry II textbooks were insufficient. The experimental examples related to the definition of acid bases were at the level of classification by the color change of indicators. The experimental examples for explaining the strength of acid and base were to compare current intensity or amount of hydrogen gas generated from the reaction with metal. In addition, all textbooks presented the state of aqueous solution when describing the Brønsted-Lowry model, causing problems with differentiation from the Arrhenius model. Therefore, it is necessary to develop examples of experiments to help students understand Brønsted-Lowry model by presenting acid and base reaction in the non-aqueous solution state.

Characteristics of Small Group Discussions About Friction in Terms of the Formation of Common Context (공통맥락 형성의 관점에서 살펴본 마찰력에 대한 소집단 토론의 특징)

  • Ha, Sangwoo;Cheong, Yong Wook;Lee, Gyoungho
    • Journal of The Korean Association For Science Education
    • /
    • v.37 no.2
    • /
    • pp.301-311
    • /
    • 2017
  • In this study, we observed the characteristics of students' small group discussions concerning the four friction problems. Participants in this study were 22 students of upper-level mechanics course and their small group discussions have been transcribed. As a result, we found that the phenomenon in this study is well defined by 'common context.' The process of formation of the common context was explicitly observed when students discussed about the identification of the problem situation (especially the movement of A in the second problem), the nature of friction and various forces, inertial frame, and noninertial reference frame. Meanwhile, the formation of common context was tacit when students thought they already had a common context. For example, students did not discuss about the friction rule itself because they had confidence about the knowledge. We also found that the presence of the questioner, receiver, and the other opinion were important for positive group discussions. The result of this study would be meaningful because it analyzed how the theme affects the group discussion beyond the limit of previous studies of just analyzing the form or pattern of discourse.

A study on teaching the system of numbers considering mathematical connections (수학적 연결성을 고려한 수 체계의 지도에 관한 연구)

  • Chung, Young-Woo;Kim, Boo-Yoon;Pyo, Sung-Soo
    • Communications of Mathematical Education
    • /
    • v.25 no.2
    • /
    • pp.473-495
    • /
    • 2011
  • Across the secondary school, students deal with the algebraic conditions like as identity, inverse, commutative law, associative law and distributive law. The algebraic structures, group, ring and field, are determined by these algebraic conditions. But the conditioning of these algebraic structures are not mentioned at all, as well as the meaning of the algebraic structures. Thus, students is likely to be considered the algebraic conditions as productions from the number sets. In this study, we systematize didactically the meanings of algebraic conditions and algebraic structures, considering connections between the number systems and the solutions of the equation. Didactically systematizing is to construct the model for student's natural mental activity, that is, to construct the stream of experience through which students are considered mathematical concepts as productions from necessities and high probability. For this purpose, we develop the program for the gifted, which its objective is to teach the meanings of the number system and to grasp the algebraic structure conceptually that is guaranteed to solve equations. And we verify the effectiveness of this developed program using didactical experiment. Moreover, the program can be used in ordinary students by replacement the term 'algebraic structure' with the term such as identity, inverse, commutative law, associative law and distributive law, to teach their meaning.

Analyzation and Improvements of the Revised 2015 Education Curriculum for Information Science of Highschool: Focusing on Information Ethics and Multimedia (고등학교 정보과학의 2015 개정 교육과정에 대한 분석 및 개선 방안: 정보윤리와 멀티미디어를 중심으로)

  • Jeong, Seungdo;Cho, Jungwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.208-214
    • /
    • 2016
  • With the rising interest in intelligence information technology built on artificial intelligence and big data technologies, all countries in the world including advanced countries such as the United States, the United Kingdom, Japan and so on, have launched national investment programs in preparation for the fourth industrial revolution centered on the software industry. Our country belatedly recognized the importance of software and initiated the 2015 revised educational curriculum for elementary and secondary informatics subjects. This paper thoroughly analyzes the new educational curriculum for information science in high schools and, then, suggests improvements in the areas of information ethics and multimedia. The analysis of the information science curriculum is applied to over twenty science high schools and schools for gifted children, which are expected to play a leading role in scientific research in our country. In the future artificial intelligence era, in which our dependence on information technology will be further increased, information ethics education for talented students who will play the leading role in making and utilizing artificial intelligence systems should be strongly emphasized, and the focus of their education should be different from that of the existing system. Also, it is necessary that multimedia education centered on digital principles and compression techniques for images, sound, videos, etc., which are commonly used in real life, should be included in the 2015 revised educational curriculum. In this way, the goal of the 2015 revised educational curriculum can be achieved, which is to encourage innovation and the efficient resolution of problems in real life and diverse academic fields based on the fundamental concepts, principles and technology of computer science.

Analysis of Problems in the Submicro Representations of Acid·Base Models in Chemistry I and II Textbooks of the 2009 & 2015 Revised Curricula (2009 개정교육과정과 2015 개정교육과정의 화학 I 및 화학 II 교과서에서 산·염기 모델의 준미시적 표상에 대한 문제점 분석)

  • Park, Chul-Yong;Won, Jeong-Ae;Kim, Sungki;Choi, Hee;Paik, Seoung-Hey
    • Journal of the Korean Chemical Society
    • /
    • v.64 no.1
    • /
    • pp.19-29
    • /
    • 2020
  • We analyzed the representations of acid-base models in 4 kinds of Chemistry I and 4 kinds of Chemistry II textbooks of the 2009 revised curriculum, and 9 kinds of Chemistry I textbooks and 6 kinds of chemistry II textbooks of the 2015 revised curriculum in this study. The problems of the textbook were divided into the problems of definitions and the representations of the logical thinking. As a result of the study, the lack of the concept of chemical equilibrium had a problem with the representation of reversible reactions in the definition of the Brønsted-Lowry model in the Chemistry I textbooks of 2009 revised curriculum, it also appeared to persist in Chemistry I textbooks of 2015 revised curriculum which contains the concept of chemical equilibrium. The representations of logical thinking were related to particle kinds of conservation logic, combinational logic, particle number conservation logic, and proportion logic. There were few problems related to representation of logical thinking in Chemistry I textbook in 2009 revision curriculum, but more problems of representations related to logics are presented in Chemistry I textbooks in 2015 revision curriculum. Therefore, as the curriculum is revised, the representations of chemistry textbooks related to acid and base models need to be changed in a way that can help students' understanding.

An Analysis on the Responses and the Behavioral Characteristics between Mathematically Promising Students and Normal Students in Solving Open-ended Mathematical Problems (수학 영재교육 대상 학생과 일반 학생의 개방형 문제해결 전략 및 행동 특성 분석)

  • Kim, Eun-Hye;Park, Man-Goo
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.15 no.1
    • /
    • pp.19-38
    • /
    • 2011
  • The purpose of this study was to analyze the responses and the behavioral characteristics between mathematically promising students and normal students in solving open-ended problems. For this study, 55 mathematically promising students were selected from the Science Education Institute for the Gifted at Seoul National University of Education as well as 100 normal students from three 6th grade classes of a regular elementary school. The students were given 50 minutes to complete a written test consisting of five open-ended problems. A post-test interview was also conducted and added to the results of the written test. The conclusions of this study were summarized as follows: First, analysis and grouping problems are the most suitable in an open-ended problem study to stimulate the creativity of mathematically promising students. Second, open-ended problems are helpful for mathematically promising students' generative learning. The mathematically promising students had a tendency to find a variety of creative methods when solving open-ended problems. Third, mathematically promising students need to improve their ability to make-up new conditions and change the conditions to solve the problems. Fourth, various topics and subjects can be integrated into the classes for mathematically promising students. Fifth, the quality of students' former education and its effect on their ability to solve open-ended problems must be taken into consideration. Finally, a creative thinking class can be introduce to the general class. A number of normal students had creativity score similar to those of the mathematically promising students, suggesting that the introduction of a more challenging mathematics curriculum similar to that of the mathematically promising students into the general curriculum may be needed and possible.

  • PDF

The predictability of science experience, school support and learning flow on the attitude of scientific inquiry in physical computing education (피지컬 컴퓨팅 교육에서 과학적 탐구 태도에 대한 과학경험, 교육지원, 학습몰입의 예측력 규명)

  • Kang, Myunghee;Jang, JeeEun;Yoon, Seonghye
    • Journal of The Korean Association of Information Education
    • /
    • v.21 no.1
    • /
    • pp.41-55
    • /
    • 2017
  • The physical computing education, as the emerging field, is a form of education that helps learners to develop the attitude of scientific inquiry by developing meaningful and creative output through the integration of hardware and software elements. Based on the literature, the authors of the study used science experience, school support and learning flow as the variables that predict the outcome variable which is the attitude of scientific inquiry. The authors collected data from 64 fourth and sixth graders who studied physical computing at an institution for the gifted and talented in Korea and then analyzed them using descriptive statistics, correlation, multiple regression and simple mediation analysis methods. As a result, science experience and learning flow significantly predicted the attitude of scientific inquiry. In addition, learning flow mediated the relationship between science experience and the attitude of scientific inquiry, and the relationship between school support and the attitude of scientific inquiry. Based on these results, the authors propose that to promote the attitude of scientific inquiry in physical computing education, strategies must be implemented for improving science experience, school support and learning flow in instructional design.

The Characteristics of Verbal Interactions According to Students' Cognitive Levels and Openness Levels of Tasks in Thinking Science Activity (Thinking Science 활동에서 과제의 개방도와 학생들의 인지수준에 따른 언어적 상호작용의 특징)

  • Yu, Sook Jung;Choi, Byung Soon
    • Journal of Science Education
    • /
    • v.36 no.2
    • /
    • pp.216-234
    • /
    • 2012
  • This study examined the characteristics of verbal interactions presented in TS activities with different tasks' openness levels by the cognitive levels of students through the implementation of TS program to 14 fifth graders in gifted class. Results of this study revealed that the open-type TS activities showed higher percentages of verbal interactions than the guiding-type TS activities showed and that the higher the open level of tasks was, the more high-level verbal interactions occurred. These results were showed in almost all subcomponents of verbal interactions. The results according to the students' cognitive levels showed that the higher the cognitive level of students was, higher frequency of interactions, high-level verbal interactions and a variety of verbal interactions occurred. The influence of both cognitive level of students and the task's openness on verbal interactions among students seemed to be interactive, however. In guiding-type activities, the percentage of high-level verbal interactions was not high although the cognitive level of students was high. And students in low level of cognition showed far lower frequency of interactions and their percentage of high-level verbal interactions was low even though the openness of the tasks was high. The results of this study meant that although open-type activities drew higher level verbal interactions by stimulating students' thought, the effects would be limited owing to their low cognitive level. Based on these findings, an implication was suggested that it is important to design instructional strategies and adjust openness level of TS activities to students' cognitive level so as to stimulate the thinking of students in lower cognitive level and to highten their engagement in activities.

  • PDF

The Likert Scale Attention Points Applied to Research on Attitude and Interests on Science Education (과학교육의 태도와 흥미 연구에서 리커트 척도 활용의 유의점)

  • Park, HyunAe;Bae, Sungwoo;Park, Jongseok
    • Journal of The Korean Association For Science Education
    • /
    • v.34 no.4
    • /
    • pp.385-391
    • /
    • 2014
  • We use a scale mainly for quantification when we study the psychological characteristics that we cannot observe. The utilization of a scale is frequent in scientific educational studies. The convenience offered by Likert scale, which is among the most frequently used, enable us to grasp characteristic attitude or recognition in students, and evaluate them against an affective domain. But a lot of errors occur, and has been noted as well in the case of utilizing Likert scale in the process. A central tendency in the utilization of Likert scale appears in this study, and the trend analyzes according to study objects and study contents, but we intend to find a way to utilize Likert scale. The results of study made on our countryside students show that the answers tend to get concentrated and a central tendency appears. Our countryside students were aware of the eyes surroundings them, have respect for elders through social experiences, and have had troubles with differentiated expression or personality in the group and cultural environments. According to the object of study, the central tendency appears more among older students than younger students, more among general students than gifted students. In the contents of study, the central tendency has been given more appearance in scope and their exposure has relatively been in large domain. Therefore when utilizing Likert scale in scientific education study, an error of central tendency appears as if they are results of the study. So, when applying the Likert scale to scientific study, we need to consider sociocultural environment, characteristics of an object and contexts of study. This enables avoiding dependence on numerical value of the utilization results, and interpret them correctly.