• Title/Summary/Keyword: The fire safety

Search Result 3,669, Processing Time 0.033 seconds

An Analysis on the Effect of Pressure System Installation on the Pipeline to Identify Pressurized Water and Self-inspection Ease in Apartment Building (아파트에 설치하는 옥내소화전 압력계 설치가 배관의 가압수 식별 및 자체점검 용이성 간의 영향 분석)

  • Son, Joo-Dal;Kong, Ha-Sung
    • Journal of the Korea Safety Management & Science
    • /
    • v.22 no.1
    • /
    • pp.33-44
    • /
    • 2020
  • This study analyzed how the installation of a pressure gauge in the indoor fire hydrant of an apartment building affected identifying pressurized water in the pipe, making it easier to conduct internal inspection on the fire suppression system, and ensuring reliability of fire suppression. The following are the study's results: First, identifying pressurized water in the indoor firefighting pipe had a positive effect on the installation of a pressure gauge in the indoor fire hydrant. This implies that a higher level of identification of pressurized water in the indoor firefighting pipe had a positive impact on improving the installation and use of a pressure gauge in the indoor fire hydrant. Second, making it easier for the fire safety officer to inspect the fire suppression system had a positive effect on the installation of a pressure gauge in the indoor fire hydrant. This suggests that if it becomes easier for the apartment building's stakeholder to conduct internal inspection or the firefighting facility manager to carry out inspection on the fire suppression system, it would have a positive effect on the installation of a pressure gauge in the indoor fire hydrant. Finally, ensuring reliability in fire suppression had a positive effect on the installation of a pressure gauge in the indoor fire hydrant. This implies that if it becomes easier to identify pressurized water in the indoor firefighting pipe, for the fire safety officer to conduct internal inspection, or for the firefighting facility manager to carry out inspection in accordance with the fire suppression system's internal inspection requirements, it would increase reliability in fire suppression, making it more necessary to install a pressure gauge in the indoor fire hydrant.

Fire Risk by Type of Building Exterior Material through Fire Cases (화재사례를 통한 건축물 외장재 종류별 화재발생위험성)

  • Lee, Jeong-Il;Kweon, Young-Hee
    • Journal of the Korea Safety Management & Science
    • /
    • v.24 no.2
    • /
    • pp.155-161
    • /
    • 2022
  • Recently, the number of cases of fire spreading due to exterior materials of buildings is increasing. Due to the nature of modern architecture, which emphasizes the aesthetics of buildings, because buildings pursue a splendid appearance, they are inexpensive and have relatively good insulation performance, but an increasing number of buildings are adopting insulation materials that have poor fire safety performance. The risk of spread is also greatly increased. Since the exterior wall of a building is made of a variety of materials and structures, it is composed of a combination of several elements, including materials such as insulation and finishing materials. Therefore, it was determined that it was necessary to introduce a more systematic evaluation method for building exterior materials, and to improve the system reflecting this, away from the existing evaluation method that only checked the fire safety performance of finishing materials.

Utilization of the robot's field of fire prevention research (로봇의 소방방재분야 활용방안 연구)

  • Lee, Jeong-Il
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2013.04a
    • /
    • pp.471-484
    • /
    • 2013
  • Large and complicated firefighting environment is accelerating in the early activities in the field of fire officials at the time limit situation leads to people's lives and property damage, as well as the loss of the Fire Service. Therefore, the state-of-the-art technology that can respond to rapidly changing fire environment urgently in the field of fire fighting have been introduced should be utilized. These intelligent firefighting robots build daegukmin firefighting safety net that can be used when. Other advanced technology industries, the most effective ways that can be introduced into the firefighting shall be provided in the current situation of the industry's initial firefighting robots.

  • PDF

A RESEARCH ON EFFECTIVE FIRE/DISASTER PROTECTION OF UTILITY TUNNEL IN KOREA

  • Park, Hung-joo;Son, Bong-sei;Jee, Nam-yong
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.404-412
    • /
    • 1997
  • The pipes and cables buried below ground, which may have helped to improve city landscape, is becoming direct and indirect causes for various kinds of disaster in Korea. Every advantage from the use of utility tunnel can not be converted in a dollar since there is associated huge contribution to safe urban environment. The Korean government has a certain role to play in helping promote utility tunnels for the past years. Most recently, many utility tunnels have been being checked to find out safety level, especially fire safety level, and main problems and shortcomings are checked out as a result of this survey. Because the fire safety level of existing tunnel is low, possible approaches and solutions are presented according to the analysis of fire safety level. In order for these approaches to be effective, existing tunnel should be supplemented appropriately and extra equipment must be installed according to the solutions. Hopefully, by performing both improvement of existing utility tunnel that provide a fire/disaster proof and introducing new types of tunnel which influence utility management and maintenance, the recent disaster rate in Korea can be diminished up to a desirable rate in a near future.

  • PDF

Fire and Evacuation Analysis in Environmental Energy Facilities (환경에너지 시설내 화재 및 피난해석)

  • Jeon, Yong-Han;Kim, Jong-Yoon
    • Fire Science and Engineering
    • /
    • v.33 no.3
    • /
    • pp.84-90
    • /
    • 2019
  • In this study, a fire and evacuation inside an electronic equipment room in environmental energy facilities were conducted and evaluated using a numerical analysis method. In the fire simulation, the visual distance, temperature distribution, and CO concentration distribution were analyzed using FDS. Based on the results, the Pathfinder program, which is an evacuation simulation, was used to calculate the evacuation time of the occupants and derive an evacuation safety evaluation. As a result, the Available safe Egress time (ASET) of P-01 and P-05 was 203.3 and 398.6 s, respectively. For the Required safety Egress time (RSET) results, all evacuees were evacuated at all points and the safety of the evacuee was secured this simulation showed that the safety evaluation is based on the non - operation of the fire - fighting equipment to improve the safety, making it possible to secure better evacuation safety performance owing to the fire of other fire - fighting facilities.

A Study on the Fire Safety Assessment of a Ship (선박의 화재안전도에 관한 연구)

  • Jung-Hoon Lee;Jae-Ohk Lee;Young-Soon Yang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.1
    • /
    • pp.116-122
    • /
    • 2001
  • In this paper, to make a base of the fire safety assessment about ship's fire protection design and Classification Society rule, statistical informations and modeling techniques for the fire safety engineering are investigated and probabilistic safety assessment methods in the structural reliability engineering are introduced. FSEM(Fire Safety Evaluation Module) developed in this paper calculates the probability of fatality, which can be used as an index of fire safety. FSEM is used to calculate the probability of fatality of the evacuees in a small room installed according to the rules for fire-proof. Sensitivity analysis is executed to investigate FSEM's applicability to ship. From results, the necessity of new criterion for ship's fire safety design, the need to study the human behavior in the evacuation from fire, and the development of new fire progress model considering special situations in ships are acknowledged.

  • PDF

A Study on Characteristics of Fire Temperature and Concentration of Toxic Gases while the Door Opening or Closed on Multi-layered Construction (복층건물의 출입문 개방여부에 따른 화재온도분포 및 독성가스 농도 변화특성에 관한 연구)

  • Lee, Jungyun;Kim, Jeonghun;Kim, Eungsik;Kim, Hong
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.2
    • /
    • pp.72-77
    • /
    • 2017
  • In S. Korea, recently, building fire accidents of residential accommodations or recreational facilities have taken place more frequently than before. Among various building constructions, Multi-layered structure, such as office-residential complex, are mostly made in S. korea. $O_2$, $CO_2$, CO, $NO_x$, $SO_x$, and HCl, these gases has toxic hazard and harmful for human body. And it is predicted that different concentration of released gases from diesel pool fire with upper and lower layer. Therefore, this study reports the fire characteristics of Multi-layered structure by analyzing the fire behavior and concentration of combustion gases of a experimental compartment via real scale fire experiment, in order to predict risks and secure safety for similar fire accidents.

Design of the Full-Scale Fire Safety Evaluation Facility for Railroad Vehicle Fire (철도차량 실대형 화재안전 성능평가 장치 설계)

  • Yoo, Yong-Ho;Kim, Heung-Youl
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.222-225
    • /
    • 2008
  • To prove a lot of technical difficulties related to the safety management of a railroad fire effectively, we design for the full-scale fire test facility of the railroad vehicle. It will be consist of major 3 part - duct system with smoke cleaning system, measuring section and gas analysis system. The CFD simulation was also carried out to design of the hood and duct system optimization. The results will be help for basic research of the railroad fire safety.

  • PDF

A Study on the Analysis of Fire Risk according to the Operation Scenario of Fire Safety Equipment (화재안전설비 작동 시나리오에 따른 화재위험분석에 관한 연구)

  • Jin, Seung-Hyeon;Koo, In-Hyuk;Kwon, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.139-140
    • /
    • 2022
  • This study aims to present basic data for fire risk assessment. In the existing fire risk assessment, the operation of fire safety facilities is not considered. In addition, there is a lack of data on the fire growth rate to predict the spread of fire. Therefore, this study intends to build a fire scenario using fire statistics data. In addition, the fire growth rate is to be derived in consideration of the floor area of burnout and the cause of fire.

  • PDF

A Study on the Fire Risk Assessment : Based on the Proposal of a Fire Risk Assessment Processor Considering the Reality in Korea (화재위험도 평가에 대한 연구 : 국내 현실을 고려한 화재위험도 평가 프로세서 제안을 중심으로)

  • Lee, Jong Hwa
    • Journal of the Korea Safety Management & Science
    • /
    • v.23 no.1
    • /
    • pp.57-64
    • /
    • 2021
  • Recently, advanced countries assessment the risk of fire to prevent large-scale damage to high-rise buildings, In addition, performance-Based design, which is a fire risk assessment, is being conducted in Korea to prevent massive damage to high-rise buildings. However, unlike advanced countries, fire risk assessment in Korea is subject to fire risk assessment only for objects subject to consent from fire-fighting facilities such as building permits, When building engineers and fire-fighting engineers assessment the risk of fire, It has always been discussed because the results vary depending on which part of the evaluation is focused between economic feasibility and safety. Therefore, in this study, we would like to propose a fire risk assessment process suitable for domestic conditions by comparing the process of performance-based design, which is a domestic fire risk assessment, and the process of Iso/TC 16732 which is an overseas fire risk assessment.