DOI QR코드

DOI QR Code

Fire and Evacuation Analysis in Environmental Energy Facilities

환경에너지 시설내 화재 및 피난해석

  • 전용한 (상지영서대학교 소방안전학과) ;
  • 김종윤 (서정대학교 소방안전관리과)
  • Received : 2019.04.23
  • Accepted : 2019.05.13
  • Published : 2019.06.30

Abstract

In this study, a fire and evacuation inside an electronic equipment room in environmental energy facilities were conducted and evaluated using a numerical analysis method. In the fire simulation, the visual distance, temperature distribution, and CO concentration distribution were analyzed using FDS. Based on the results, the Pathfinder program, which is an evacuation simulation, was used to calculate the evacuation time of the occupants and derive an evacuation safety evaluation. As a result, the Available safe Egress time (ASET) of P-01 and P-05 was 203.3 and 398.6 s, respectively. For the Required safety Egress time (RSET) results, all evacuees were evacuated at all points and the safety of the evacuee was secured this simulation showed that the safety evaluation is based on the non - operation of the fire - fighting equipment to improve the safety, making it possible to secure better evacuation safety performance owing to the fire of other fire - fighting facilities.

본 연구에서는 환경에너지 시설내 전자기기실 내부의 화재 및 피난을 수치적 해석 방법을 통해 실시하고 평가하였다. 화재 시뮬레이션은 FDS을 이용하여 가시거리, 온도분포, CO의 농도분포 등을 분석하였다. 그 결과를 토대로 피난시뮬레이션인 Pathfinder프로그램을 사용하여, 재실자들의 피난시간을 계산하였으며 피난안전성 평가를 도출하였다. 그 결과 전자기기실 내부의 피난 허용시간은 P-01에서 203.3 s로 가장 단시간 내에 대피가 요구되었으며, P-05에서 398.6 s로 피난 허용시간이 가장 큰 값을 나타내었다. 피난 소요시간 분석 결과 모든 지점에서 모든 재실 인원이 대피가 이루어져 대피자의 안전성이 확보되는 것으로 판단되었다. 특히 이 시뮬레이션의 결과는 피난안전성능을 높이기 위하여 소방설비가 작동하지 않는 경우를 고려한 것으로서 실제 화재 발생 시 소방설비가 작동된다면 보다 우수한 안전을 확보할 수 있을 것으로 사료된다.

Keywords

References

  1. J. S. Roh, and H. S. Ryou, "CFD Simulation and Assessment of Life Safety in a Subway Train Fire", Tunnelling and Underground Space Technology, Vol. 24 No. 4, pp. 447-453 (2009). https://doi.org/10.1016/j.tust.2008.12.003
  2. P. Abolghasemzadeh, "A Comprehensive Method for Environmentally Sensitive and Behavioral Microscopic Egress Analysis in Case of Fire in Buildings", Safety Science, Vol. 59, No. 1, pp. 1-9 (2013). https://doi.org/10.1016/j.ssci.2013.04.008
  3. K. B. McGrattan, "Fire Dynamics Simulator Version 5 User's Guide", National Institute of Standards and Technology, USA (2010).
  4. J. O. Yoo, "A Study on Evacuation Characteristic by CrossSectional Areas and Smoke Control Velocity at Railway Tunnel Fire", Journal of Korean Tunnel Underground Space Association, Vol. 17, No. 3, pp. 215-226 (2015). https://doi.org/10.9711/KTAJ.2015.17.3.215
  5. P. J. DiNenno, "The SFPE Handbook of Fire Protection Engineering 4th edition", National Fire Protection Association, USA (2008).
  6. N. Mu, W. G. Song, X. X. Qi, W. Lu, and S. C. Cao, "Simulation of Evacuation in a Twin Bore Tunnel: Analysis of Evacuation Time and Egress Selection", Procedia Engineering, Vol. 71, No. 1, pp. 333-342 (2014). https://doi.org/10.1016/j.proeng.2014.04.048
  7. E. Ronchi, and P. Colonna, "The Evaluation of Different Evacuation Models for Assessing Road Tunnel Safety Analysis", Tunnelling and Underground Space Technology, Vol. 30, No. 1, pp. 74-84 (2012). https://doi.org/10.1016/j.tust.2012.02.008
  8. S. L. Poon, "A Dynamic Approach to ASET/RSET Assessment in Performance based Design", Procedia Engineering, Vol. 71, No. 1, pp. 173-181 (2014). https://doi.org/10.1016/j.proeng.2014.04.025
  9. K. B. McGrattan, "Verification & Validation of Selected Fire Models for Nuclear Power Plant Applications : Fire Dynamics Simulator", U.S. Nuclear Regulatory Commission, USA (2007).