• Title/Summary/Keyword: The dots

Search Result 771, Processing Time 0.025 seconds

Aqueous Synthesis and Luminescent Characteristics of Cu:ZnSe Quantum Dots by Internal Doping Method (내부 도핑 법에 의한 Cu 도핑 Cu:ZnSe 양자점의 수계 합성 및 발광 특성)

  • Back, Geum Ji;Hong, Hyun Seon
    • Journal of Powder Materials
    • /
    • v.29 no.5
    • /
    • pp.370-375
    • /
    • 2022
  • Cu-doped ZnSe quantum dots were successfully synthesized in an aqueous solution using an internal doping method. The effects of ligand type, CuSe synthesis temperature, and heating time on Cu-doped ZnSe synthesis were systematically investigated. Of MPA, GSH, TGA, and NAC used as ligands, MPA was the optimal ligand as determined by PL spectrum analysis. In addition, the emission wavelength was found to depend on the synthesis temperature of the internal doping core of CuSe. As the temperature increased, the doping of Cu2+ was enhanced, and the emission wavelength band was redshifted; accordingly, the emission peaks moved from blue to green (up to 550 nm). Thus, the synthesis of Cu:ZnSe using internal doping in aqueous solutions is a potential method for ecomanufacturing of color-tuned ZnSe quantum dots for display applications.

Synthesis and Characterization of CdSe/CdS/N-Acetyl-L-Cysteine/Quercetin Nano-Composites and Their Antibacterial Performance

  • Wang, Kunjie;Li, Mingliang;Li, Hongxia;Guan, Feng;Zhang, Deyi;Feng, Huixia;Fan, Haiyan
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.2
    • /
    • pp.136-141
    • /
    • 2015
  • We have discovered that quercetin, once coated on the CdSe and CdSe-CdS quantum dots (QDs), becoming highly water soluble. In the present work, we have successfully synthesized CdSe/CdS/N-Acetyl-L-Cysteine(NAC)/Quercetin nano-composites in the aqueous solution. The products were characterized using UV-vis spectroscopy, X-ray powder diffraction, fluorescence spectroscopy, and Fourier transform infrared spectroscopy. The transmission electron microscopy (TEM) tests indicated that our nano-composite products are highly stable with homogeneous particle size and great monodispersity. Quercetin coated nano-composite CdSe/CdS/NAC/Quercetin showed different fluorescence behavior from that of CdSe/CdS/NAC. Most amazingly, the synthesized CdSe/CdS/NAC/Quercetin nano-composite exhibits strong antibacterial activity. The combination of the strong fluorescence and its antibacterial activity makes the quercetin modified quantum dots as a potential candidate for cancer targeted therapy and other cancer treatments.

A Visual Model for the Perception of the Optical illusions from Discrete Dot Stimuli (이산 도트 자극에서 시각적 착시를 인식하는 시각 모델)

  • Jung, Eun-Hwa;Hong, Keong-Ho
    • The KIPS Transactions:PartB
    • /
    • v.10B no.6
    • /
    • pp.639-646
    • /
    • 2003
  • This paper proposes a neural network model for extracting optical illusions produced by a sequence of discontinuous dot stimuli. The proposed model is based on visual cell's characters founded by visual information processing path. This study approaches on the basis of physiological observation of the perceptual phenomena that some simple ways of discrete dots are perceived as a continuous virtual contour rather than as separate dots. This paper presents the implementation of the optical illusions from discrete dot stimuli that are composed of virtual polygons from 6 to 10 dots. This experimental data are similar to those of Smith & Vos's physiological experiments. The proposed model shows that it can extract continuous illusion contours from discrete dot stimuli successfully.

Humidity and Temperature Response Characteristics of Optical Fiber Dislocation Fusion Sensor Coated with Graphene Quantum Dots

  • Dailin Li;Xiaodan Yu;Ning Wang;Wenting Liu;Shiqi Liu;Liang Xu;Dong Fang;Huapeng Yu
    • Current Optics and Photonics
    • /
    • v.7 no.5
    • /
    • pp.504-510
    • /
    • 2023
  • An optical fiber dislocation fusion humidity sensor coated with graphene quantum dots is investigated. A Mach-Zehnder interferometer is fabricated with three dislocated single-mode fibers with graphene quantum dots coating humidity-sensitive materials. Humidity response experiments showed a good linear response and high sensitivity with easy fabrication and low-cost materials. From 22% to 98% RH, the humidity response sensitivity of the sensor is 0.24 dB/% RH, with 0.9825 linearity. To investigate the cross-response of humidity and temperature, temperature response experiments are conducted. From 30 ℃ to 70 ℃, the results showed 0.02 dB/℃ sensitivity and 0.9824 linearity. The humidity response experimental curve is compared with the temperature experimental curve. The big difference between humidity sensitivity and temperature sensitivity is very helpful to solve the cross-response of humidity and temperature. The influence of temperature fluctuations in humidity measurements is not obvious.

CdSe Quantum Dots Sensitized TiO2 Electrodes for Photovoltaic Cells

  • Yum, Jun-Ho;Choi, Sang-Hyun;Kim, Seok-Soon;Kim, Dong-Yu;Sung, Yung-Eun
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.4
    • /
    • pp.257-261
    • /
    • 2007
  • The electronic properties of quantum dots can be tuned by changing the size of particles without any change in their chemical composition. CdSe quantum dots, the sizes of which were controlled by changing the concentrations of Cd and Se precursors, were adsorbed on $TiO_2$ photoelectrodes and used as sensitizers for photovoltaic cells. For applications of CdSe quantum dot as sensitizers, $CdSe/TiO_2$ films on conducting glass were employed in a sandwich-type cell that incorporated a platinum-coated conductive glass and an electrolyte consisting of an $I^-/I_3^-$ redox. The fill factor (FF) and efficiency for energy conversion ($\c{c}$) of the photovoltaic cell was 62 % and 0.32 %, respectively.

Synthesis and Exploitation in Solar Cells of Hydrothermally Grown ZnO Nanorods Covered by ZnS Quantum Dots

  • Mehrabian, Masood;Afarideh, Hossein;Mirabbaszadeh, Kavoos;Lianshan, Li;Zhiyong, Tang
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.307-316
    • /
    • 2014
  • Improved power conversion efficiency of hybrid solar cells with ITO/ZnO seed layer/ZnO NRs/ZnS QDs/P3HT/PCBM/Ag structure was obtained by optimizing the growth period of ZnO nanorods (NRs). ZnO NRs were grown using a hydrothermal method on ZnO seed layers, while ZnS quantum dots (QDs) (average thickness about 24 nm) were fabricated on the ZnO NRs by the successive ionic layer adsorption and reaction (SILAR) technique. Morphology, crystalline structure and optical absorption of layers were analyzed by a scanning electron microscope (SEM), X-ray diffraction (XRD) and UV-Visible absorption spectra, respectively. The XRD results implied that ZnS QDs were in the cubic phase (sphalerite). Other experimental results showed that the maximum power conversion efficiency of 4.09% was obtained for a device based on ZnO NR10 under an illumination of one Sun (AM 1.5G, $100mW/cm^2$).

Fabrication of Visible-Light Sensitized ZnTe/ZnSe (Core/Shell) Type-II Quantum Dots

  • Kim, Misung;Bang, Jiwon
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.5
    • /
    • pp.510-514
    • /
    • 2018
  • Colloidal semiconductor quantum dots (QDs), because of the novel optical and electrical properties that stem from their three-dimensional confinement, have attracted great interest for their potential applications in such fields as bio-imaging, display, and opto-electronics. However, many semiconductors that can be exploited for QD applications contain toxic elements. Herein, we synthesized non-toxic ZnTe/ZnSe (core/shell) type-II QDs by pyrolysis method. Because of the unique type-II character of these QDs, their emission can range over an extended wavelength regime, showing photoluminescence (PL) from 450 nm to 580 nm. By optimizing the ZnSe shell growth condition, resulting ZnTe/ZnSe type-II QDs shows PL quantum yield up to ~ 25% with 35 nm PL bandwidth. Using a simple two step cation exchange reaction, we also fabricated ZnTe/ZnSe type-II QDs with absorption extended over the whole visible region. The visible-light sensitized heavy metal free ZnTe/ZnSe type-II QDs can be relevant for opto-electronic applications such as displays, light emitting diodes, and bio-imaging probes.

Influence of GaAs/AlGaAs Superlattice Layers on Optical Properties of InAs Quantum Dots (InAs 양자점의 광학적 성질에 미치는 초격자층의 영향)

  • Jeong Yonkil;Choi Hyonkwang;Park Yumi;Hwang Sukhyon;Yoon Jin-Joo;Lee Jewon;Leem Jae-Young;Jeon Minhyon
    • Korean Journal of Materials Research
    • /
    • v.14 no.2
    • /
    • pp.146-151
    • /
    • 2004
  • We investigated the effects of high potential barriers on the optical characteristics of InAs quantum dots (QDs) by using photoluminescence (PL) and photoreflectance (PR) spectroscopy. A sample with regular InAs quantum dots on GaAs was grown by molecular beam epitaxy (MBE) as a reference. Another InAs QDs sample was embedded in single AlGaAs barriers. On the other hand, a sample with GaAs/AlGaAs superlattice barriers was adopted for comparison with a sample with a single AlGaAs layer. In results, we found that the emission wavelength of QDs was effectively tailored by using high potential barriers. Also, it was found that the optical properties of a sample with QDs embedded in GaAs/AlGaAs superlattices were better than those of a sample with QDs embedded in a single layer of AlGaAs barriers. We believe that GaAs/AlGaAs superlattice could effectively prevent the generation of defects.

Anchoring Cadmium Chalcogenide Quantum Dots (QDs) onto Stable Oxide Semiconductors for QD Sensitized Solar Cells

  • Lee, Hyo-Joong;Kim, Dae-Young;Yoo, Jung-Suk;Bang, Ji-Won;Kim, Sung-Jee;Park, Su-Moon
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.6
    • /
    • pp.953-958
    • /
    • 2007
  • Anchoring quantum dots (QDs) onto thermodynamically stable, large band gap oxide semiconductors is a very important strategy to enhance their quantum yields for solar energy conversion in both visible and near-IR regions. We describe a general procedure for anchoring a few chalcogenide QDs onto the titanium oxide layer. To anchor the colloidal QDs onto a mesoporous TiO2 layer, linker molecules containing both carboxylate and thiol functional groups were initially attached to TiO2 layers and subsequently used to capture dispersed QDs with the thiol group. Employing the procedure, we exploited cadmium selenide (CdSe) and cadmium telluride (CdTe) quantum dots (QDs) as inorganic sensitizers for a large band gap TiO2 layer of dye-sensitized solar cells (DSSCs). Their attachment was confirmed by naked eyes, absorption spectra, and photovoltaic effects. A few QD-TiO2 systems thus obtained have been characterized for photoelectrochemical solar energy conversion.

Optical Properties of InAs Quantum Dots Grown by Using Arsenic Interruption Technique

  • Choe, Yun-Ho;Kim, Hui-Yeon;Ryu, Mi-Lee;Jo, Byeong-Gu;Kim, Jin-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.268-268
    • /
    • 2011
  • GaAs (001) 기판에 MBE를 이용하여 자발형성법으로 성장한 InAs 양자점(QDs: quantum dots)의 광학적 특성을 PL (photoluminescence)과 TRPL (time-resolved PL)을 이용하여 분석하였다. InAs 양자점 성장 동안 In 공급은 계속하면서 As 공급을 주기적으로 차단과 공급을 반복하면서 성장하였다. As 차단과 공급을 1초, 2초, 그리고 3초씩 하면서 InAs 양자점을 성장하였다. 기준시료는 In과 As 공급을 중단하지 않고 20초 동안 성장하였다. As interruption mode로 성장한 시료들의 QD density는 기준시료에 비해 증가하였으며, size distribution도 기준시료에 비해 향상되었다. 기준시료와 비교하였을 때, As interruption mode로 성장한 시료들의 PL 피크는 적색이동 (red-shift)를 보였으며, PL 세기는 2배 이상 증가하였다. PL 소멸곡선은 파장이 증가함에 따라 점차 느려지다가 PL 피크에서 가장 느린 소멸을 보인 후 다시 점차 빠르게 소멸하였다. 시료의 온도를 10 K에서 60 K까지 증가하였을 때 PL 피크 에너지는 변하지 않았으며, PL 소멸시간은 서서히 증가함을 보였다. 온도를 더 증가하였을 때 PL 피크 에너지는 적색이동 하였으며 PL 소멸시간도 빠르게 감소함을 보였다. As interruption mode로 성장한 양자점 시료의 구조적 특성 변화에 의한 광학적 특성 변화를 확인하였다.

  • PDF