Browse > Article
http://dx.doi.org/10.4150/KPMI.2022.29.5.370

Aqueous Synthesis and Luminescent Characteristics of Cu:ZnSe Quantum Dots by Internal Doping Method  

Back, Geum Ji (Department of Next Generation Applied Sciences, Sungshin Women's University)
Hong, Hyun Seon (Department of Next Generation Applied Sciences, Sungshin Women's University)
Publication Information
Journal of Powder Materials / v.29, no.5, 2022 , pp. 370-375 More about this Journal
Abstract
Cu-doped ZnSe quantum dots were successfully synthesized in an aqueous solution using an internal doping method. The effects of ligand type, CuSe synthesis temperature, and heating time on Cu-doped ZnSe synthesis were systematically investigated. Of MPA, GSH, TGA, and NAC used as ligands, MPA was the optimal ligand as determined by PL spectrum analysis. In addition, the emission wavelength was found to depend on the synthesis temperature of the internal doping core of CuSe. As the temperature increased, the doping of Cu2+ was enhanced, and the emission wavelength band was redshifted; accordingly, the emission peaks moved from blue to green (up to 550 nm). Thus, the synthesis of Cu:ZnSe using internal doping in aqueous solutions is a potential method for ecomanufacturing of color-tuned ZnSe quantum dots for display applications.
Keywords
ZnSe; Nanoparticle; Internally Doping; Cu; Ligand;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 G. Y. Lan, Y. W. Lin, Y. F. Huang and H. T. Chang: J. Mater. Chem., 17 (2007) 2661.   DOI
2 Z. Chen, J. Chen, Q. Liang, D. Wu, Y. Zeng and B. Jiang: J. Lumin., 145 (2014) 569.   DOI
3 H. Shen, H. Wang, X. Li, J. Z. Niu, H. Wang, X. Chen and L. S. Li: Dalton Trans., 47 (2009) 10534.
4 A. Aboulaich, M. Geszke, L. Balan, J. Ghanbaja, G. Medjahdi and R. Schneider: Inorg. Chem., 49 (2010) 10940.   DOI
5 J. Mazher, S. Badwe, R. Sengar, D. Gupta and R. K. Pandey: Physica E., 16 (2003) 209.   DOI
6 J. F. Suyver, T. Van der Beek, S. F. Wuister, J. J. Kelly and A. Meijerink: Appl. Phys. Lett., 79 (2001) 4222.   DOI
7 S. Jana, B. B. Srivastava, S. Acharya, P. K. Santra, N. R. Jana, D. D. Sarma and N. Pradhan: Chem. Commun., 46 (2010) 2853.   DOI
8 G. Xue, W. Chao, N. Lu and S. Xingguang: J. Lumin., 131 (2011) 1300.   DOI
9 C. Wang, S. Xu, Z. Wang and Y. Cui: J. Phys. Chem. C., 115 (2011) 18486.   DOI
10 N. Pradhan and X. Peng: J. Am. Chem. Soc., 129 (2007) 3339.   DOI
11 S. Xu, C. Wang, Z. Wang, H. Zhang, J. Yang, Q. Xu, H. Shao, R. Li, W. Lei and Y. Cui: Nanotechnology, 22 (2011) 275605.   DOI
12 G. J. Back, H. Y. Song, M. S. Lee and H. S. Hong: J. Powder Mater., 28 (2021) 44.   DOI
13 H. S. Hong, M. S. Kim, E. K. Byun and Y. L. Lee: J. Crystal Growth., 535 (2020) 125523.
14 Y. Wu, S.Y. Chen, Y. L. Weng, Y. A. Zhang, C. X. Wu, L. Sun, S. L. Zhang, Q. Yan, T. L. Guo and X. T. Zhou: J. Mater. Sci. Mater. Electron., 30 (2019) 21406.   DOI
15 G. Xue, W. Chao, N. Lu and S. Xingguang: J. Lumin., 131 (2011) 1300.   DOI
16 Y. Wu, S. Chen, Y. Weng, Y. Zhang, C. Wu, L. Sun, S. Zhang, Q. Yan, T. Guo and X. Zhou: J. Mater. Sci. Mater. Electron., 30 (2019) 21406.   DOI
17 Z. Deng, F. L. Lie, S. Shen, I. Ghosh M. Mansuripur and A. J. Muscat: Langmuir., 25 (2009) 434.   DOI
18 F. Mirnajafizadeh, D. Ramsey, S. McApline, F. Wang, P. Reece and J. A. Stride: Mater. Sci. Eng. C., 64 (2016) 167.   DOI
19 R. Hernandez, E. Rosendo, R. Romano-trujillo, A. I. Oliva, G. Garcia and G. Nieto: Mater. Lett., 159 (2015) 229.   DOI
20 Y. G. Kim: Ceramist., 16 (2013) 42.
21 S. Xu, C. Wang, Z. Wang, H. Zhang, J. Yang, Q. Xu, H. Shao, R. Li, W. Lei and Y. Cui: Nanotechnology., 22 (2011) 275605.   DOI
22 C. Wang, Z. Hu, S. Xu, Y. Wang, Z. Zhao, Z. Wang and Y. Cui: Nanotechnology, 26 (2015) 305601.   DOI
23 S. W. Kim and M. J. Kang: Polymer Science and Technology, 23 (2012) 493.
24 L. Sun, F. Gong, C. Zhou, H. Wang and S. Yao: Mater. Express., 5 (2015) 219.   DOI
25 N. Pradhan, D. Goorskey, J. Thessing and X. Peng: J. Am. Chem. Soc., 127 (2005) 17586.   DOI