• 제목/요약/키워드: The Simulated Annealing

검색결과 626건 처리시간 0.026초

A hybrid tabu search algorithm for Task Allocation in Mobile Crowd-sensing

  • Akter, Shathee;Yoon, Seokhoon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제12권4호
    • /
    • pp.102-108
    • /
    • 2020
  • One of the key features of a mobile crowd-sensing (MCS) system is task allocation, which aims to recruit workers efficiently to carry out the tasks. Due to various constraints of the tasks (such as specific sensor requirement and a probabilistic guarantee of task completion) and workers heterogeneity, the task allocation become challenging. This assignment problem becomes more intractable because of the deadline of the tasks and a lot of possible task completion order or moving path of workers since a worker may perform multiple tasks and need to physically visit the tasks venues to complete the tasks. Therefore, in this paper, a hybrid search algorithm for task allocation called HST is proposed to address the problem, which employ a traveling salesman problem heuristic to find the task completion order. HST is developed based on the tabu search algorithm and exploits the premature convergence avoiding concepts from the genetic algorithm and simulated annealing. The experimental results verify that our proposed scheme outperforms the existing methods while satisfying given constraints.

철송 크레인 일정계획 문제에 대한 메타 휴리스틱 (Metaheuristics of the Rail Crane Scheduling Problem)

  • 김광태;김경민
    • 산업공학
    • /
    • 제24권4호
    • /
    • pp.281-294
    • /
    • 2011
  • This paper considers the rail crane scheduling problem which is defined as determining the sequence of loading/unloading container on/from a freight train. The objective is to minimize the weighted sum of the range of order completion time and makespan. The range of order completion time implies the difference between the maximum of completion time and minimum of start time of each customer order consisting of jobs. Makespan refers to the time when all the jobs are completed. In a rail freight terminal, logistics firms as a customer wish to reduce the range of their order completion time. To develop a methodology for the crane scheduling, we formulate the problem as a mixed integer program and develop three metaheuristics, namely, genetic algorithm, simulated annealing, and tabu search. To validate the effectiveness of heuristic algorithms, computational experiments are done based on a set of real life data. Results of the experiments show that heuristic algorithms give good solutions for small-size and large-size problems in terms of solution quality and computation time.

평균장 이론을 이용한 전량화분석 문제의 최적화 (Quantification Analysis Problem using Mean Field Theory in Neural Network)

  • 조광수
    • 한국정보처리학회논문지
    • /
    • 제2권3호
    • /
    • pp.417-424
    • /
    • 1995
  • 본 논문에서는 정량화(Quantification) 문제를 MFT(Mean Field Theroy)를 통해서 해결하는 기법을 제안한다. 통계학에서 중요한 문제의 하나인 정량화 문제는 주어진 공간에서 대상들간의 유사성에 따라서 최적의 상태를 갖도록 하는 문제이다. 평균장 접근 방법에 기초한 한개의 변수로 표현되는 확률적 시뮬레이티드 아닐링을 제안하고 정량화 문제를 패널티(penalty) 파라메타 항을 첨가한 비한정된 최적화 문제로 변형하 여 MFT를 적용하였다. 또한 연속변수를 갖는 신경회로망에서 실제 값을 계산하는 것 보다 평균장 접근방법으로 계산하는것이 더 빠르게 계산될 수 있음을 확인하였다. 본 논문에서 제안한 방법이 실험결과 해석적인 방법보다 좋은 정량적 결과를 보였다.

  • PDF

2자유도 PID 제어기를 이용한 AGV의 조향 제어에 관한 연구 (A Study on AGV Steering Control using TDOF PID Controller)

  • 이권순;이영진;손주한;이만형
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제49권5호
    • /
    • pp.241-248
    • /
    • 2000
  • Until now, all of the port goods are transported manually by container transporter in the port. Recently there are a lot of studies about unmanned vehicle driven automatically. In terms of the vehicle automation, the control of steering and velocity on vehicle systems is very important part in container transporter. In common sense, vehicle systems have lots of nonlinear parameters so we have many difficulties in designing the optimal controller of them. In this paper, we present a design of the TDOF PID controller using a hybrid schematic algorithm to control the steering system optimally. We used the single-track model to pre-test the designed controller before appling to AGV. We also used the ES(evolutionary strategy) and SA(simulated annealing) algorithms to construct the hybrid tuning algorithm for parameters of controller. Finally, we had the computer simulation to verify that our designed controller has better performance than the other one.

  • PDF

Bayesian Nonlinear Blind Channel Equalizer based on Gaussian Weighted MFCM

  • Han, Soo-Whan;Park, Sung-Dae;Lee, Jong-Keuk
    • 한국멀티미디어학회논문지
    • /
    • 제11권12호
    • /
    • pp.1625-1634
    • /
    • 2008
  • In this study, a modified Fuzzy C-Means algorithm with Gaussian weights (MFCM_GW) is presented for the problem of nonlinear blind channel equalization. The proposed algorithm searches for the optimal channel output states of a nonlinear channel based on received symbols. In contrast to conventional Euclidean distance in Fuzzy C-Means (FCM), the use of the Bayesian likelihood fitness function and the Gaussian weighted partition matrix is exploited in this method. In the search procedure, all possible sets of desired channel states are constructed by considering the combinations of estimated channel output states. The set of desired states characterized by the maxima] value of the Bayesian fitness is selected and updated by using the Gaussian weights. After this procedure, the Bayesian equalizer with the final desired states is implemented to reconstruct transmitted symbols. The performance of the proposed method is compared with those of a simplex genetic algorithm (GA), a hybrid genetic algorithm (GA merged with simulated annealing (SA):GASA), and a previously developed version of MFCM. In particular, a relative]y high accuracy and a fast search speed have been observed.

  • PDF

Subset selection in multiple linear regression: An improved Tabu search

  • Bae, Jaegug;Kim, Jung-Tae;Kim, Jae-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제40권2호
    • /
    • pp.138-145
    • /
    • 2016
  • This paper proposes an improved tabu search method for subset selection in multiple linear regression models. Variable selection is a vital combinatorial optimization problem in multivariate statistics. The selection of the optimal subset of variables is necessary in order to reliably construct a multiple linear regression model. Its applications widely range from machine learning, timeseries prediction, and multi-class classification to noise detection. Since this problem has NP-complete nature, it becomes more difficult to find the optimal solution as the number of variables increases. Two typical metaheuristic methods have been developed to tackle the problem: the tabu search algorithm and hybrid genetic and simulated annealing algorithm. However, these two methods have shortcomings. The tabu search method requires a large amount of computing time, and the hybrid algorithm produces a less accurate solution. To overcome the shortcomings of these methods, we propose an improved tabu search algorithm to reduce moves of the neighborhood and to adopt an effective move search strategy. To evaluate the performance of the proposed method, comparative studies are performed on small literature data sets and on large simulation data sets. Computational results show that the proposed method outperforms two metaheuristic methods in terms of the computing time and solution quality.

이온주입 공정을 이용한 4H-SiC p-n Diode에 관한 시뮬레이션 연구 (Simulation Study of ion-implanted 4H-SiC p-n Diodes)

  • 이재상;방욱;김상철;김남균;구상모
    • 한국전기전자재료학회논문지
    • /
    • 제22권2호
    • /
    • pp.128-131
    • /
    • 2009
  • Silicon carbide (SiC) has attracted significant attention for high frequency, high temperature and high power devices due to its superior properties such as the large band gap, high breakdown electric field, high saturation velocity and high thermal conductivity. We performed Al ion implantation processes on n-type 4H-SiC substrate using a SILVACO ATHENA numerical simulator. The ion implantation model used Monte-Carlo method. We simulated the effect of channeling by Al implantation in both 0 off-axis and 8 off-axis n-type 4H-SiC substrate. We have investigated the effect of varying the implantation energies and the corresponding doses on the distribution of Al in 4H-SiC. The controlled implantation energies were 40, 60, 80, 100 and 120 keV and the implantation doses varied from $2{\times}10^{14}$ to $1{\times}10^{15}\;cm^{-2}$. The Al ion distribution was deeper with increasing implantation energy, whereas the doping level increased with increasing dose. The effect of post-implantation annealing on the electrical properties of Al-implanted p-n junction diode were also investigated.

Refinement of protein NMR structures using atomistic force field and implicit solvent model: Comparison of the accuracies of NMR structures with Rosetta refinement

  • Jee, Jun-Goo
    • 한국자기공명학회논문지
    • /
    • 제26권1호
    • /
    • pp.1-9
    • /
    • 2022
  • There are two distinct approaches to improving the quality of protein NMR structures during refinement: all-atom force fields and accumulated knowledge-assisted methods that include Rosetta. Mao et al. reported that, for 40 proteins, Rosetta increased the accuracies of their NMR-determined structures with respect to the X-ray crystal structures (Mao et al., J. Am. Chem. Soc. 136, 1893 (2014)). In this study, we calculated 32 structures of those studied by Mao et al. using all-atom force field and implicit solvent model, and we compared the results with those obtained from Rosetta. For a single protein, using only the experimental NOE-derived distances and backbone torsion angle restraints, 20 of the lowest energy structures were extracted as an ensemble from 100 generated structures. Restrained simulated annealing by molecular dynamics simulation searched conformational spaces with a total time step of 1-ns. The use of GPU-accelerated AMBER code allowed the calculations to be completed in hours using a single GPU computer-even for proteins larger than 20 kDa. Remarkably, statistical analyses indicated that the structures determined in this way showed overall higher accuracies to their X-ray structures compared to those refined by Rosetta (p-value < 0.01). Our data demonstrate the capability of sophisticated atomistic force fields in refining NMR structures, particularly when they are coupled with the latest GPU-based calculations. The straightforwardness of the protocol allows its use to be extended to all NMR structures.

Optimal Power Allocation for Wireless Uplink Transmissions Using Successive Interference Cancellation

  • Wu, Liaoyuan;Wang, Yamei;Han, Jianghong;Chen, Wenqiang;Wang, Lusheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권5호
    • /
    • pp.2081-2101
    • /
    • 2016
  • Successive interference cancellation (SIC) is considered to be a promising technique to mitigate multi-user interference and achieve concurrent uplink transmissions, but the optimal power allocation (PA) issue for SIC users is not well addressed. In this article, we focus on the optimization of the PA ratio of users on an SIC channel and analytically obtain the optimal PA ratio with regard to the signal-to-interference-plus-noise ratio (SINR) threshold for successful demodulation and the sustainable demodulation error rate. Then, we design an efficient resource allocation (RA) scheme using the obtained optimal PA ratio. Finally, we compare the proposal with the near-optimum RA obtained by a simulated annealing search and the RA scheme with random PA. Simulation results show that our proposal achieves a performance close to the near-optimum and much higher performance than the random scheme in terms of total utility and Jain's fairness index. To demonstrate the applicability of our proposal, we also simulate the proposal in various network paradigms, including wireless local area network, body area network, and vehicular ad hoc network.

Multi-Objective Pareto Optimization of Parallel Synthesis of Embedded Computer Systems

  • Drabowski, Mieczyslaw
    • International Journal of Computer Science & Network Security
    • /
    • 제21권3호
    • /
    • pp.304-310
    • /
    • 2021
  • The paper presents problems of optimization of the synthesis of embedded systems, in particular Pareto optimization. The model of such a system for its design for high-level of abstract is based on the classic approach known from the theory of task scheduling, but it is significantly extended, among others, by the characteristics of tasks and resources as well as additional criteria of optimal system in scope structure and operation. The metaheuristic algorithm operating according to this model introduces a new approach to system synthesis, in which parallelism of task scheduling and resources partition is applied. An algorithm based on a genetic approach with simulated annealing and Boltzmann tournaments, avoids local minima and generates optimized solutions. Such a synthesis is based on the implementation of task scheduling, resources identification and partition, allocation of tasks and resources and ultimately on the optimization of the designed system in accordance with the optimization criteria regarding cost of implementation, execution speed of processes and energy consumption by the system during operation. This paper presents examples and results for multi-criteria optimization, based on calculations for specifying non-dominated solutions and indicating a subset of Pareto solutions in the space of all solutions.