Refinement of protein NMR structures using atomistic force field and implicit solvent model: Comparison of the accuracies of NMR structures with Rosetta refinement

  • Jee, Jun-Goo (Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University)
  • Received : 2022.01.21
  • Accepted : 2022.01.25
  • Published : 2022.03.20


There are two distinct approaches to improving the quality of protein NMR structures during refinement: all-atom force fields and accumulated knowledge-assisted methods that include Rosetta. Mao et al. reported that, for 40 proteins, Rosetta increased the accuracies of their NMR-determined structures with respect to the X-ray crystal structures (Mao et al., J. Am. Chem. Soc. 136, 1893 (2014)). In this study, we calculated 32 structures of those studied by Mao et al. using all-atom force field and implicit solvent model, and we compared the results with those obtained from Rosetta. For a single protein, using only the experimental NOE-derived distances and backbone torsion angle restraints, 20 of the lowest energy structures were extracted as an ensemble from 100 generated structures. Restrained simulated annealing by molecular dynamics simulation searched conformational spaces with a total time step of 1-ns. The use of GPU-accelerated AMBER code allowed the calculations to be completed in hours using a single GPU computer-even for proteins larger than 20 kDa. Remarkably, statistical analyses indicated that the structures determined in this way showed overall higher accuracies to their X-ray structures compared to those refined by Rosetta (p-value < 0.01). Our data demonstrate the capability of sophisticated atomistic force fields in refining NMR structures, particularly when they are coupled with the latest GPU-based calculations. The straightforwardness of the protocol allows its use to be extended to all NMR structures.



  1. K. Wuthrich, NMR of Proteins and Nucleic Acids. Wiley, New York (1986)
  2. T. J. Ragan, R. H. Fogh, R. Tejero, W. Vranken, G. T. Montelione, A. Rosato and G. W. Vuister, J. Biomol. NMR, 62, 413 (2015)
  3. A. Rosato, J. M. Aramini, C. Arrowsmith, A. Bagaria, D. Baker, A. Cavalli, J. F. Doreleijers, A. Eletsky, A. Giachetti, P. Guerry, A. Gutmanas, P. Guntert, Y. He, T. Herrmann, Y. J. Huang, V. Jaravine, H. R. Jonker, M. A. Kennedy, O. F. Lange, G. Liu, T. E. Malliavin, R. Mani, B. Mao, G. T. Montelione, M. Nilges, P. Rossi, G. van der Schot, H. Schwalbe, T. A. Szyperski, M. Vendruscolo, R. Vernon, W. F. Vranken, S. Vries, G. W. Vuister, B. Wu, Y. Yang and A. M. Bonvin, Structure, 20, 227 (2012)
  4. C. D. Schwieters, J. J. Kuszewski, N. Tjandra and G. M. Clore, J. Magn. Reson., 160, 65 (2003)
  5. A. T. Brunger, P. D. Adams, G. M. Clore, W. L. DeLano, P. Gros, R. W. Grosse-Kunstleve, J. S. Jiang, J. Kuszewski, M. Nilges, N. S. Pannu, R. J. Read, L. M. Rice, T. Simonson and G. L. Warren, Acta Crystallogr. D Biol. Crystallogr., 54, 905 (1998)
  6. P. Guntert, C. Mumenthaler and K. Wuthrich, J. Mol. Biol., 273, 283 (1997)
  7. J.-G. Jee, Bull. Korean Chem. Soc., 35, 1944 (2014)
  8. N. Sekiyama, J.-G. Jee, S. Isogai, K. Akagi, T. H. Huang, M. Ariyoshi, H. Tochio and M. Shirakawa, J. Biomol. NMR, 52, 339 (2012)
  9. J.-G. Jee, T. Mizuno, K. Kamada, H. Tochio, Y. Chiba, K. Yanagi, G. Yasuda, H. Hiroaki, F. Hanaoka and M. Shirakawa, J. Biol. Chem., 285, 15931 (2010)
  10. J.-G. Jee, Bull. Korean Chem. Soc., 31, 2717 (2010)
  11. J.-G. Jee and H.-C. Ahn, Bull Korean Chem. Soc., 30, 1139 (2009)
  12. A. Ohno, J.-G. Jee, K. Fujiwara, T. Tenno, N. Goda, H. Tochio, H. Kobayashi, H. Hiroaki and M. Shirakawa, Structure, 13, 521 (2005)
  13. K. Fujiwara, T. Tenno, K. Sugasawa, J.-G. Jee, I. Ohki, C. Kojima, H. Tochio, H. Hiroaki, F. Hanaoka and M. Shirakawa, J. Biol. Chem., 279, 4760 (2004)
  14. K. Joo, I. Joung, J. Lee, J. Lee, W. Lee, B. Brooks, S. J. Lee and J. Lee, Proteins, 83, 2251 (2015)
  15. R. Das and D. Baker, Annu. Rev. Biochem., 77, 363 (2008)
  16. Y. Shen and A. Bax, Nat. Methods, 12, 747 (2015)
  17. O. F. Lange, P. Rossi, N. G. Sgourakis, Y. Song, H. W. Lee, J. M. Aramini, A. Ertekin, R. Xiao, T. B. Acton, G. T. Montelione and D. Baker, Proc. Natl. Acad. Sci. U. S. A., 109, 10873 (2012)
  18. S. Raman, O. F. Lange, P. Rossi, M. Tyka, X. Wang, J. Aramini, G. Liu, T. A. Ramelot, A. Eletsky, T. Szyperski, M. A. Kennedy, J. Prestegard, G. T. Montelione, D. Baker, Science, 327, 1014 (2010)
  19. Y. Shen, O. Lange, F. Delaglio, P. Rossi, J. M. Aramini, G. Liu, A. Eletsky, Y. Wu, K. K. Singarapu, A. Lemak, A. Ignatchenko, C. H. Arrowsmith, T. Szyperski, G. T. Montelione, D. Baker and A. Bax, Proc. Natl. Acad. Sci. U. S. A., 105, 4685 (2008)
  20. B. Mao, R. Tejero, D. Baker, G. T. and Montelione, J. Am. Chem. Soc., 136, 1893 (2014)
  21. H. Park, F. DiMaio, and D. Baker, Structure, 23, 1123 (2015)
  22. S. Lindert, J. A. and McCammon, J. Chem. Theory Comput., 11, 1337 (2015)
  23. V. Mirjalili, K. Noyes and M. Feig, Proteins, 82 Suppl. 2, 196 (2014)
  24. V. Mirjalili and M. Feig, J. Chem. Theory Comput., 9, 1294 (2013)
  25. S. Lindert, J. Meiler and J. A. McCammon, J. Chem. Theory Comput., 9, 3843 (2013)
  26. J. Chen and C. L. Brooks, 3rd, Proteins, 67, 922 (2007)
  27. R. Salomon-Ferrer, A. W. Gotz, D. Poole, S. Le Grand, R. C. Walker, J Chem Theory Comput, 9, 3878 (2013)
  28. A. W. Gotz, M. J. Williamson, D. Xu, D. Poole, S. Le Grand and R. C. Walker, J. Chem. Theory Comput., 8, 1542 (2012)
  29. J.-G. Jee, J. Kor. Mag. Res. Soc., 18, 69 (2014)
  30. D. A. Case, T. A. Darden, T. E. Cheatham, I. Simmerling, C.L., J. Wang, R. E. Duke, R. Luo, R. C. Walker, W. Zhang, K. M. Merz, B. Roberts, S. Hayik, A. Roitberg, G. Seabra, J. Swails, A. W. Goetz, I. Kolossvary, K. F. Wong, F. Paesani, J. Vanicek, R. M. Wolf, J. Liu, X. Wu, S. R. Brozell, T. Steinbrecher, H. Gohlke, Q. Cai, X. Ye, J. Wang, M.-J. Hsieh, G. Cui, D. R. Roe, D. H. Mathews, M. G. Seetin, R. Salomon-Ferrer, C. Sagui, V. Babin, T. Luchko, S. Gusarov, A. Kovalenko and P. A. Kollman, University of California, San Francisco (2012)
  31. S. Le Grand, A. W. Gotz and R. C. Walker, Computer Physics Communications, 184, 374 (2013)
  32. D. K. Kirchner and P. Guntert, BMC Bioinformatics, 12, 170 (2011)
  33. J. Xu and Y. Zhang, Bioinformatics, 26, 889 (2010)
  34. Y. Zhang and J. Skolnick, Proteins, 57, 702 (2004)
  35. R. J. Read and G. Chavali, Proteins, 69 Suppl 8, 27 (2007)
  36. A. Zemla, C. Venclovas, J. Moult and K. Fidelis, Proteins, Suppl 5, 13 (2001)
  37. A. Zemla, C. Venclovas, J. Moult and K. Fidelis, Proteins, Suppl 3, 22 (1999)
  38. A. Bhattacharya, R. Tejero and G. T. Montelione, Proteins, 66, 778 (2007)
  39. J.-G. Jee, J. Kor. Mag. Res. Soc., 18, 24 (2014)
  40. G. T. Montelione, M. Nilges, A. Bax, P. Guntert, T. Herrmann, J. S. Richardson, C. D. Schwieters, W. F. Vranken, G. W. Vuister, D. S. Wishart, H. M. Berman, G. J. Kleywegt and J. L. Markley, Structure, 21, 1563 (2013)
  41. T. Ikeya, J.-G. Jee, Y. Shigemitsu, J. Hamatsu, M. Mishima, Y. Ito, M. Kainosho and P. Guntert, J. Biomol. NMR, 50, 137 (2011)
  42. K. Tunyasuvunakool, J. Adler, Z. Wu, T. Green, M. Zielinski, A. Zidek, A. Bridgland, A. Cowie, C. Meyer, A. Laydon, S. Velankar, G. J. Kleywegt, A. Bateman, R. Evans, A. Pritzel, M. Figurnov, O. Ronneberger, R. Bates, S. A. A. Kohl, A. Potapenko, A. J. Ballard, B. Romera-Paredes, S. Nikolov, R. Jain, E. Clancy, D. Reiman, S. Petersen, A. W. Senior, K. Kavukcuoglu, E. Birney, P. Kohli, J. Jumper and D. Hassabis, Nature, 596, 590 (2021)
  43. J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvunakool, R. Bates, A. Zidek, A. Potapenko, A. Bridgland, C. Meyer, S. A. A. Kohl, A. J. Ballard, A. Cowie, B. Romera-Paredes, S. Nikolov, R. Jain, J. Adler, T. Back, S. Petersen, D. Reiman, E. Clancy, M. Zielinski, M. Steinegger, M. Pacholska, T. Berghammer, S. Bodenstein, D. Silver, O. Vinyals, A. W. Senior, K. Kavukcuoglu, P. Kohli and D. Hassabis, Nature, 596, 583 (2021)