DOI QR코드

DOI QR Code

Refinement of protein NMR structures using atomistic force field and implicit solvent model: Comparison of the accuracies of NMR structures with Rosetta refinement

  • Jee, Jun-Goo (Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University)
  • Received : 2022.01.21
  • Accepted : 2022.01.25
  • Published : 2022.03.20

Abstract

There are two distinct approaches to improving the quality of protein NMR structures during refinement: all-atom force fields and accumulated knowledge-assisted methods that include Rosetta. Mao et al. reported that, for 40 proteins, Rosetta increased the accuracies of their NMR-determined structures with respect to the X-ray crystal structures (Mao et al., J. Am. Chem. Soc. 136, 1893 (2014)). In this study, we calculated 32 structures of those studied by Mao et al. using all-atom force field and implicit solvent model, and we compared the results with those obtained from Rosetta. For a single protein, using only the experimental NOE-derived distances and backbone torsion angle restraints, 20 of the lowest energy structures were extracted as an ensemble from 100 generated structures. Restrained simulated annealing by molecular dynamics simulation searched conformational spaces with a total time step of 1-ns. The use of GPU-accelerated AMBER code allowed the calculations to be completed in hours using a single GPU computer-even for proteins larger than 20 kDa. Remarkably, statistical analyses indicated that the structures determined in this way showed overall higher accuracies to their X-ray structures compared to those refined by Rosetta (p-value < 0.01). Our data demonstrate the capability of sophisticated atomistic force fields in refining NMR structures, particularly when they are coupled with the latest GPU-based calculations. The straightforwardness of the protocol allows its use to be extended to all NMR structures.

Keywords

References

  1. K. Wuthrich, NMR of Proteins and Nucleic Acids. Wiley, New York (1986)
  2. T. J. Ragan, R. H. Fogh, R. Tejero, W. Vranken, G. T. Montelione, A. Rosato and G. W. Vuister, J. Biomol. NMR, 62, 413 (2015) https://doi.org/10.1007/s10858-015-9953-4
  3. A. Rosato, J. M. Aramini, C. Arrowsmith, A. Bagaria, D. Baker, A. Cavalli, J. F. Doreleijers, A. Eletsky, A. Giachetti, P. Guerry, A. Gutmanas, P. Guntert, Y. He, T. Herrmann, Y. J. Huang, V. Jaravine, H. R. Jonker, M. A. Kennedy, O. F. Lange, G. Liu, T. E. Malliavin, R. Mani, B. Mao, G. T. Montelione, M. Nilges, P. Rossi, G. van der Schot, H. Schwalbe, T. A. Szyperski, M. Vendruscolo, R. Vernon, W. F. Vranken, S. Vries, G. W. Vuister, B. Wu, Y. Yang and A. M. Bonvin, Structure, 20, 227 (2012) https://doi.org/10.1016/j.str.2012.01.002
  4. C. D. Schwieters, J. J. Kuszewski, N. Tjandra and G. M. Clore, J. Magn. Reson., 160, 65 (2003) https://doi.org/10.1016/S1090-7807(02)00014-9
  5. A. T. Brunger, P. D. Adams, G. M. Clore, W. L. DeLano, P. Gros, R. W. Grosse-Kunstleve, J. S. Jiang, J. Kuszewski, M. Nilges, N. S. Pannu, R. J. Read, L. M. Rice, T. Simonson and G. L. Warren, Acta Crystallogr. D Biol. Crystallogr., 54, 905 (1998)
  6. P. Guntert, C. Mumenthaler and K. Wuthrich, J. Mol. Biol., 273, 283 (1997) https://doi.org/10.1006/jmbi.1997.1284
  7. J.-G. Jee, Bull. Korean Chem. Soc., 35, 1944 (2014) https://doi.org/10.5012/bkcs.2014.35.7.1944
  8. N. Sekiyama, J.-G. Jee, S. Isogai, K. Akagi, T. H. Huang, M. Ariyoshi, H. Tochio and M. Shirakawa, J. Biomol. NMR, 52, 339 (2012) https://doi.org/10.1007/s10858-012-9614-9
  9. J.-G. Jee, T. Mizuno, K. Kamada, H. Tochio, Y. Chiba, K. Yanagi, G. Yasuda, H. Hiroaki, F. Hanaoka and M. Shirakawa, J. Biol. Chem., 285, 15931 (2010) https://doi.org/10.1074/jbc.M109.075333
  10. J.-G. Jee, Bull. Korean Chem. Soc., 31, 2717 (2010) https://doi.org/10.5012/bkcs.2010.31.9.2717
  11. J.-G. Jee and H.-C. Ahn, Bull Korean Chem. Soc., 30, 1139 (2009) https://doi.org/10.5012/bkcs.2009.30.5.1139
  12. A. Ohno, J.-G. Jee, K. Fujiwara, T. Tenno, N. Goda, H. Tochio, H. Kobayashi, H. Hiroaki and M. Shirakawa, Structure, 13, 521 (2005) https://doi.org/10.1016/j.str.2005.01.011
  13. K. Fujiwara, T. Tenno, K. Sugasawa, J.-G. Jee, I. Ohki, C. Kojima, H. Tochio, H. Hiroaki, F. Hanaoka and M. Shirakawa, J. Biol. Chem., 279, 4760 (2004) https://doi.org/10.1074/jbc.M309448200
  14. K. Joo, I. Joung, J. Lee, J. Lee, W. Lee, B. Brooks, S. J. Lee and J. Lee, Proteins, 83, 2251 (2015) https://doi.org/10.1002/prot.24941
  15. R. Das and D. Baker, Annu. Rev. Biochem., 77, 363 (2008) https://doi.org/10.1146/annurev.biochem.77.062906.171838
  16. Y. Shen and A. Bax, Nat. Methods, 12, 747 (2015) https://doi.org/10.1038/nmeth.3437
  17. O. F. Lange, P. Rossi, N. G. Sgourakis, Y. Song, H. W. Lee, J. M. Aramini, A. Ertekin, R. Xiao, T. B. Acton, G. T. Montelione and D. Baker, Proc. Natl. Acad. Sci. U. S. A., 109, 10873 (2012) https://doi.org/10.1073/pnas.1203013109
  18. S. Raman, O. F. Lange, P. Rossi, M. Tyka, X. Wang, J. Aramini, G. Liu, T. A. Ramelot, A. Eletsky, T. Szyperski, M. A. Kennedy, J. Prestegard, G. T. Montelione, D. Baker, Science, 327, 1014 (2010) https://doi.org/10.1126/science.1183649
  19. Y. Shen, O. Lange, F. Delaglio, P. Rossi, J. M. Aramini, G. Liu, A. Eletsky, Y. Wu, K. K. Singarapu, A. Lemak, A. Ignatchenko, C. H. Arrowsmith, T. Szyperski, G. T. Montelione, D. Baker and A. Bax, Proc. Natl. Acad. Sci. U. S. A., 105, 4685 (2008) https://doi.org/10.1073/pnas.0800256105
  20. B. Mao, R. Tejero, D. Baker, G. T. and Montelione, J. Am. Chem. Soc., 136, 1893 (2014) https://doi.org/10.1021/ja409845w
  21. H. Park, F. DiMaio, and D. Baker, Structure, 23, 1123 (2015) https://doi.org/10.1016/j.str.2015.03.022
  22. S. Lindert, J. A. and McCammon, J. Chem. Theory Comput., 11, 1337 (2015) https://doi.org/10.1021/ct500995d
  23. V. Mirjalili, K. Noyes and M. Feig, Proteins, 82 Suppl. 2, 196 (2014) https://doi.org/10.1002/prot.24336
  24. V. Mirjalili and M. Feig, J. Chem. Theory Comput., 9, 1294 (2013) https://doi.org/10.1021/ct300962x
  25. S. Lindert, J. Meiler and J. A. McCammon, J. Chem. Theory Comput., 9, 3843 (2013) https://doi.org/10.1021/ct400260c
  26. J. Chen and C. L. Brooks, 3rd, Proteins, 67, 922 (2007) https://doi.org/10.1002/prot.21345
  27. R. Salomon-Ferrer, A. W. Gotz, D. Poole, S. Le Grand, R. C. Walker, J Chem Theory Comput, 9, 3878 (2013) https://doi.org/10.1021/ct400314y
  28. A. W. Gotz, M. J. Williamson, D. Xu, D. Poole, S. Le Grand and R. C. Walker, J. Chem. Theory Comput., 8, 1542 (2012) https://doi.org/10.1021/ct200909j
  29. J.-G. Jee, J. Kor. Mag. Res. Soc., 18, 69 (2014) https://doi.org/10.6564/JKMRS.2014.18.2.069
  30. D. A. Case, T. A. Darden, T. E. Cheatham, I. Simmerling, C.L., J. Wang, R. E. Duke, R. Luo, R. C. Walker, W. Zhang, K. M. Merz, B. Roberts, S. Hayik, A. Roitberg, G. Seabra, J. Swails, A. W. Goetz, I. Kolossvary, K. F. Wong, F. Paesani, J. Vanicek, R. M. Wolf, J. Liu, X. Wu, S. R. Brozell, T. Steinbrecher, H. Gohlke, Q. Cai, X. Ye, J. Wang, M.-J. Hsieh, G. Cui, D. R. Roe, D. H. Mathews, M. G. Seetin, R. Salomon-Ferrer, C. Sagui, V. Babin, T. Luchko, S. Gusarov, A. Kovalenko and P. A. Kollman, University of California, San Francisco (2012)
  31. S. Le Grand, A. W. Gotz and R. C. Walker, Computer Physics Communications, 184, 374 (2013) https://doi.org/10.1016/j.cpc.2012.09.022
  32. D. K. Kirchner and P. Guntert, BMC Bioinformatics, 12, 170 (2011) https://doi.org/10.1186/1471-2105-12-170
  33. J. Xu and Y. Zhang, Bioinformatics, 26, 889 (2010) https://doi.org/10.1093/bioinformatics/btq066
  34. Y. Zhang and J. Skolnick, Proteins, 57, 702 (2004) https://doi.org/10.1002/prot.20264
  35. R. J. Read and G. Chavali, Proteins, 69 Suppl 8, 27 (2007) https://doi.org/10.1002/prot.21662
  36. A. Zemla, C. Venclovas, J. Moult and K. Fidelis, Proteins, Suppl 5, 13 (2001)
  37. A. Zemla, C. Venclovas, J. Moult and K. Fidelis, Proteins, Suppl 3, 22 (1999)
  38. A. Bhattacharya, R. Tejero and G. T. Montelione, Proteins, 66, 778 (2007) https://doi.org/10.1002/prot.21165
  39. J.-G. Jee, J. Kor. Mag. Res. Soc., 18, 24 (2014) https://doi.org/10.6564/JKMRS.2014.18.1.024
  40. G. T. Montelione, M. Nilges, A. Bax, P. Guntert, T. Herrmann, J. S. Richardson, C. D. Schwieters, W. F. Vranken, G. W. Vuister, D. S. Wishart, H. M. Berman, G. J. Kleywegt and J. L. Markley, Structure, 21, 1563 (2013) https://doi.org/10.1016/j.str.2013.07.021
  41. T. Ikeya, J.-G. Jee, Y. Shigemitsu, J. Hamatsu, M. Mishima, Y. Ito, M. Kainosho and P. Guntert, J. Biomol. NMR, 50, 137 (2011) https://doi.org/10.1007/s10858-011-9502-8
  42. K. Tunyasuvunakool, J. Adler, Z. Wu, T. Green, M. Zielinski, A. Zidek, A. Bridgland, A. Cowie, C. Meyer, A. Laydon, S. Velankar, G. J. Kleywegt, A. Bateman, R. Evans, A. Pritzel, M. Figurnov, O. Ronneberger, R. Bates, S. A. A. Kohl, A. Potapenko, A. J. Ballard, B. Romera-Paredes, S. Nikolov, R. Jain, E. Clancy, D. Reiman, S. Petersen, A. W. Senior, K. Kavukcuoglu, E. Birney, P. Kohli, J. Jumper and D. Hassabis, Nature, 596, 590 (2021) https://doi.org/10.1038/s41586-021-03828-1
  43. J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvunakool, R. Bates, A. Zidek, A. Potapenko, A. Bridgland, C. Meyer, S. A. A. Kohl, A. J. Ballard, A. Cowie, B. Romera-Paredes, S. Nikolov, R. Jain, J. Adler, T. Back, S. Petersen, D. Reiman, E. Clancy, M. Zielinski, M. Steinegger, M. Pacholska, T. Berghammer, S. Bodenstein, D. Silver, O. Vinyals, A. W. Senior, K. Kavukcuoglu, P. Kohli and D. Hassabis, Nature, 596, 583 (2021) https://doi.org/10.1038/s41586-021-03819-2