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Bayesian Nonlinear Blind Channel Equalizer based
on Gaussian Weighted MFCM
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ABSTRACT

In this study, a modified Fuzzy C-Means algorithm with Gaussian weights (MFCM_GW) is presented
for the problem of nonlinear blind channel equalization. The proposed algorithm searches for the optimal
channel output states of a nonlinear channel based on received symbols. In contrast to conventional
Fuclidean distance in Fuzzy C-Means ('CM), the use of the Bayesian likelihood fitness function and
the Gaussian weighted partition matrix is exploited in this method. In the search procedure, all possible
sets of desired channel states are constructed by considering the combinations of estimated channel output
states. The set of desired states characterized by the maximal value of the Bayesian fitness is selected
and updated by using the Gaussian weights. After this procedure, the Bayesian equalizer with the final
desired states is implemented to reconstruct transmitted symbols. The performance of the proposed meth—
od is compared with those of a simplex genetic algorithm (GA), a hybrid genetic algorithm (GA merged
with simulated annealing (SA):GASA), and a previously developed version of MFCM. In particular, a
relatively high accuracy and a fast search speed have been observed.

Key words: Modified Fuzzy C-Means, Gaussian Weighted Partition Matrix, Bayesian Likelihood,

Desired Channel States, Nonlinear Blind Channel

1. INTRODUCTION

In digital communication systems, data symbols
are transmitted at regular intervals. Time dis-
persion caused by non-ideal channel frequency re-
sponse characteristics, or by multipath trans-
mission, may create inter-symbol interference
(ISI). This has become a limiting factor in many
communication environments. Furthermore, the
nonlinear character of ISI that often arises in high
speed communication channels degrades the per-

formance of the overall communication system [1].
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To overcome the detrimental ISI effects and to
achieve high-speed and reliable communication,
we have to resort ourselves to nonlinear channel
equalization.

The conventional approach to linear or nonlinear
channel equalization requires an initial training pe—
riod, with a known data sequence, to learn the
channel characteristics. In contrast to standard
equalization methods, the so-called blind (or
self-recovering) equalization methods operate
without a training sequence [2]. Given its superi-
ority, the blind equalization method has gained
practical interest during the last few years. Most
of the studies carried out so far are focused on line-
ar channel equalization because of its inherent sim-
plicity [3-5].

Relatively a small number of papers have dealt
explicitly with nonlinear charmel models. The blind
estimation of Volterra kernels, which characterize
nonlinear channels, was presented in {6] while a

maximum likelihood (ML) method implemented via
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expectation-maximization (EM) was introduced in
[7]. In spite of the advantages of these approaches,
these methods are not free from limitations. The
Volterra approach suffers from enormous compu-
tational complexity. Furthermore the ML approach
requires some prior knowledge of the nonlinear
channel structure to estimate the channel
parameters. The approach with a nonlinear struc-
ture such as multilayer perceptrons, being trained
to minimize some cost function, have been inves—
tigated in [8]. However, in this method, the struc-
ture and complexity of the nonlinear equalizer must
be specified in advance. The support vector (SV)
equalizer proposed by Santamaria et al. [9) can be
a possible solution for both of linear and nonlinear
blind channel equalization at the same time, but it
still suffers from the high computational cost of its
iterative reweighted quadratic programming
procedure. The deterministic approach provided by
Raz et al. [10] offers a linealizing Volterra filter
equalizer and the linearized channel that results
from the cascade connection of the blind nonlinear
channel with Volterra filter equalizer. However,
this algorithm uses the oversampling technique
that translates a single input single output (SISO)
system to a single input multi output (SIMO)
system. Furthermore the resulting oversampled
channel matrix must be invertible over the trans~
mitted symbols. For this method, the sampling rate
for the received signal has to be higher than the
baud rate, otherwise a multi~sensor array must be
utilized. In addition, the signal to noise ratio (SNR)
should be kept relatively high. A unique approach
to nonlinear channel blind equalization was offered
by Lin et al. [11]. In their study they used the sim-
plex GA method to estimate the optimal channel
output states instead of estimating the channel pa-
rameters in a direct manner. The desired channel
states were constructed from these estimated
channel output states, and placed at the center of
their RBF equalizer. With this method, the complex

modeling of the nonlinear channel can be avoided

and it works well under a simple SISO communi-
cation environment. Recently this approach has
been implemented with a hybrid genetic algorithm
(that is genetic algorithm, GA merged with simu-
lated annealing (SA); GASA) [12] and a modified
Fuzzy C-Means (MFCM) algorithm [13] instead of
the simplex GA. The resulting better performance
in terms of speed and accuracy have been reported.
However, the estimation accuracy and con-
vergence speed in search of the optimal channel
output states needs further improvement for the
heavy noise communication environments such as
real-time use.

In this study, we propose a new modified Fuzzy
C-Means algorithm with Gaussian weights
(MFCM_GW) to determine the optimal output
states of a nonlinear channel. In the proposed algo-
rithm, the Gaussian weighted partition matrix is
developed and applied to the previous version of
MFCM [13] for the reduction of noise effect. Thus,
even the received symbols are corrupted by a
heavy noise, the MFCM_GW can estimate the op-
timal output states with the relatively high accu-
racy and fast convergence speed. Its performance
is compared with those of a simplex GA, a GASA
and a MFCM. In the experiments, the optimal out-
put states are estimated by each of four search
algorithms. Using the estimated channel output
states, the desired channel states are derived and
then utilized to compute the decision probability of
Bayesian equalizer for the reconstruction of trans-
mitted symbols.

The organization of this paper is as follows.
Section 2 includes a brief introduction to the
equalization of nonlinear channel using the
Bayesian equalizer; Section 3 shows the relation
between the desired channel states and the chan-
nel output states. In section 4, the proposed
MFCM_GW is introduced. The simulation results
including comparisons with three other algorithms
are provided in section 5. Conclusions are pre—

sented in Section 6.
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2. EQUALIZATION OF NONLINEAR
CHANNEL USING BAYESIAN
EQUALIZER

A nonlinear channel equalization system is
shown in Fig. 1. A digital sequence s(k) is trans-
mitted through the nonlinear channel, which is
composed of a linear portion described by H(z) and
a nonlinear component N(z), governed by the fol-

lowing expressions,

) =S h(i)sth i) 1)
k) = D) + D3k + DLFRY + D3k @

where p is the channel order and D; stands for
the coefficient of the i nonlinear term. The trans—
mitted symbol sequence s(k) is assumed to con-
stitute an equiprobable and independent binary se-
quence taking values from a two-valued set{il}.
We assume that the channel output is corrupted
by an additive white Gaussian noise e(k). Given

this, the channel observation y(k) can be written
as

y(k) = 3(k) +e(k) 3

If g denotes the equalizer order (number of tap
delay elements in the equalizer), then there exist

M=27""" different input sequences
s(k) = [s(k), s(k 1), 5(k = p~ q)] (4)

that may be received (where each component is
either equal to 1 or - 1). For a specific channel or-
der and equalizer order, the number of input pat-
terns that influence the equalizer is equal to M, and

Nonlinear channel

Nonlinear portion N(z)

Linear portion
¥

Fig. 1. An overall structure of a nonlinear channel
equalization system

the input vector of equalizer without noise is
I =3k, 3k = 1), 3k = )] (5)

The noise-free observation vector ¥(k) is re-
ferred to as the desired channel states, and can be
partitioned into two sets, Yy« and Ye, as shown
in (6) and (7), depending on the value of s(k-d),
where d is the desired time delay.

V= (k) | stk—d)=+1) ©
Yo 3k) | stk—d)=—1) o

In case of a linear channel (D=1, D=0, Ds=0 and
Dg=0), k) in (3), (5), (6) and (7) is replaced with
Y(k) in (1). The task of the equalizer is to recover
the transmitted symbols s(k-d) based on the ob-
servation vector y(k). Because of the additive
white Gaussian noise, the observation vector y(k)
is a random process having conditional Gaussian
density functions centered at each of the desired
channel states. The determination of the value of
s(k—d) becomes a decision problem. Bayes decision
theory [14] provides the optimal solution to the
general decision problem, and thus can be applied
here to derive the optimal solution for the equalizer.
The solution forming the optimal Bayesian equal-
izer for the equiprobable transmitted symbols is
given as follows [15,16]

+1

Falpti))= ;e"p(-Hﬂ")—y?‘

f207)

20 vy -y 202 ®

{H, To(y(k)=0
S(k=d)y=sgn(f (0= -1, f,0EN<0 (9
where »i" and ¥ are the desired channel states
belonging to sets qul and Y{.}z, respectively, and
their number of elements in these sets are denoted
by 7" and 7. Furthermore o is the noise variance.
The optimal equalizer solution in (8) depends on
the desired channel states. In other words, the sol-
ution of nonlinear blind channel equalization cru-

cially depends on how to find the desired channel
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states, ¥' and %', only from the observation vec—
tor y(k). In this study, the proposed MFCM_GW
algorithm is investigated in search of the optimal
output states of a nonlinear blind channel with the
high accuracy and fast convergence speed. The
desired channel states can be derived by consider—
ing their relationship with the searched channel
output states. It will be explained in the next
section. The optimal Bayesian decision probability
in (8) is used to construct the fitness function of
proposed algorithm, and it is also utilized as an
equalizer, along with (9), for the reconstruction of
the transmitted symbols.

3. DESIRED CHANNEL STATES AND
CHANNEL OUTPUT STATES

The desired channel states, Ji " and ¥: ’, must
be known for the Bayesian equalizer (8) ~ (9) in
order to reconstruct the transmitted symbols. If the
channel order is taken as p=1 with H(z)=05+1.0z""
the equalizer order g is equal to 1, the time delay
d is also set to 1, and the nonlinear portion is de~
scribed by D =1,D,=01D,=0.05D,=00 (gee Fig.
1), then the eight different channel states (279" =8)
may be observed at the receiver in the noise-free
case. Here the output of the equalizer should be
$(k-1 as shown in Table 1. From this table, it
can be seen that the desired channel states
[P, 3 =] can be constructed from the elements
of the dataset, called “channel output states”,
{“1»az>a3>a4}, where for this particular channel we
have @ =189375a, =—048125 4, =0.53125 a, =-1.44375.
The length of dataset, #, is determined by the
channel order, p, such as 27" =4. In general, if g=1
and d=1, the desired channel states for ¥\ and ¥/
are (araz), {anw), (asan), (as,a2), and (aya3), (asas),
(as,a3), (as,a4), Tespectively. In the case of d=0, the
channel states, (a1, (a1,a0), (az,a3), (az,as), belong
to ¥, and (azan), (as,ae), (as,as), (asaq) belong to

Y. This relation is valid for the channel that has

Table 1. The relation between desired channel
states and channel output states

Nonlinear channel with H(z)=05+1.0z" D =1D, =
0.1,0,=0.050,=0.0 and d=1
Transmitted Desired channel states Ou(;E) u
symbols equalizer
By channel
sRstk-Dsk-2) | 30 kD :;‘;git $e-1)
{“hab"i’%}
1 1 1 1.89375  1.89375 (ay.ay) 1
1 -1 1.89375 -0.48125 (ay,02) 1
S | 053125  1.89375 (ay.ay) 1
-1 1T -1 0.53125 -048125 (a3,az) 1
To~1 1 | -048125 053125 (@3.93) 1
1o-1 -1 | -048125 -1.44375 {az,a4) -1
-1 -1 1 |-144375 053125 (a,,a:) -1
1 o1 1 | -144375 -1.44375 (a,.a,) -1

a one—-to-one mapping between the channel inputs
and outputs [11]. Thus the desired channel states
can be derived from the channel output states if
we assume that p is known, and the main problem
of blind equalization can be changed to focus on
finding the optimal channel output states from the
received patterns.

It is known that the Bayesian likelihood (BL),
given by (10), is always maximized with respect
to the desired channel states derived from the opti-
mal channel output states [16].

BL= ﬁmax( 1R, £ (k) (10)

where ' 0=2 =y -3 1202y, 70k =

Z‘eXp(_ny(k)_yi_“]z/zdf) and L is the length of
received sequences. Therefore, the BL is utilized
as the fitness function (FF) of the proposed algo-
rithm to find the optimal channel output states.
Being more specific, the fitness function is taken
as the logarithm of the BL, that is

FF = $ logmax(/ (0 /5 () -

The optimal channel output states, which max-
imize the fitness function FF, cannot be obtained
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with the use of the conventional gradient-based
methods given the fact that the channel structure
is not known in advance [11]. For carrying out
search of these optimal channel output states, the
proposed MFCM_GW is utilized in this study, and
its performance is compared with those of three
other search algorithms introduced in [11-13].

4. A MODIFIED FUZZY C-MEANS WITH
GAUSSIAN WEIGHTS (MFCM_GW)

Before the intreduction of the proposed
MECM_GW to solve the problem of nonlinear blind
channel equalization, the previously developed ver-
sion of MFCM presented in [13] should be inves-
tigated at first because both algorithms have the
same structure.

The MFCM comes with two additional stages
in comparison with the standard version of the
Fuzzy C-Means (FCM) [13,17]. One of them con—
cerns the construction stage of possible data set
of desired channel states with the derived elements
of channel output states. The other is the selection
stage for the optimal desired channel states among
them based on the Bayesian likelihood fitness
function. For the channel shown in Table 1, the
four elements of channel output states (2 =4) are
required to construct the optimal desired channel
states. If the candidates, {C;scz&uQ}, for the ele-
ments of optimal channel output states {apazﬁ;»%},
are extracted from the centers of a conventional
FCM algorithm (or randomly initialized at first),
twelve (41/2) different possible data sets of desired
channel states can be constructed by completing
matching between fencnencand lana.aa). To
facilitate fast matching, the arrangements of
{e.conene,}) are saved to a certain mapping set C
such as ((1)=1,2,34, C(2)=1,24,3, -, C12)=3,2,1,4
before the search process starts. For example,
C(2)=1,2,4,3 means that the set of desired channel

states is constructed with ¢ for a1, @ for a, ¢ for

as, and ¢3 for as in Table 1. The desired channel

states for this set are described as Vi e (37 ‘e

7+

and ¥ e for sets Yoa and You, respectively), and
its fitness function in (11) is presented by FF(2).
At the next stage, a data set of desired channel
states, which has a maximum Bayesian fitness

value, is selected as shown below
lindex _j, max_FF|=max( FF(1),FF(2),-, FF{(12)j(12)

This data set (Fr crmes ), the set of desired
channel states configured by the selected Clin-
dex_j), is utilized as a center set in the conventional
FCM algorithm. Subsequently the partition matrix
U is updated and a new center set Vi is sequen-
tially derived with the use of this updated matrix
U. These are shown in (13) and (14).

1

Ui(:nl) _ i
o 106 =917 s |
00 = 31 e | (13)
Ll LY
S Y k)
(m+l) _k0
i i1,
2y (14)
where ¥™" is the estimated center set at the

(m+1)" iteration and ns is the total number of cen—
ter vectors {n,=8 for the channel in Table 1). The
new four candidates for the elements of optimal
output states are extracted from this new center

(i )

set, »"™"', based on the relation presented in Table
1. The eight centers in the new center set are treat-
ed as the desired channel states constructed by the
elements of channel output states, {apaz,a;;%},
shown in Table 1, and thus each value of the new
{c.c,.c0.¢,) is replaced with each one of the
{a.a,,a5.a,} in the new center set as in (15),

respectively.

C(_MH/‘

fa

. 41 P -
=a, in 7" where r=1,2,34 (15)

These steps are repeated until the Bayesian like-
lihood fitness function has not been changed or the
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maximum number of iteration has been reached.
More details about MFCM can be found in [13].

However, the performance of MFCM is easily
affected by a heavy noise, because its partition ma-

trix U and center set Y are updated based on
Euclidean distance measure such as shown in
equations (13) and (14) by the clustering process
of a standard FCM algorithm. As mentioned in
section 2, the received symbol y(k) is a random
process having conditional Gaussian density func-
tions centered at each of the desired channel states
because of the additive white Gaussian noise. Thus
to avoid this noise effect, the proposed MFCM_GW
utilizes the Gaussian density function to derive the

membership matrix U and a new center set ¥: by
replacing the equations (13) and (14) in the MFCM
with equations (16) and (17), respectively.
PP - ¥ i || 126

gexp(-ny(k)-yff"é(,.m,,»)ﬂzao:) a16)

(m+l) __
Uy =

L-t

yim = RUE yk) an

where . is the noise variance. For the commu-
nication channels corrupted by the additive white
Gaussian noise, it has a more robust characteristic
to the noise than the MFCM does. It will be clearly
shown in our experiments. The proposed
MFCM_GW algorithm can be concisely described
as some pseudo-code along with its flowchart
shown in Fig. 2.

begin
save arrangements of candidates, {01,02&3,04}, to C
randomly initialize the candidates, {eneene,}
while (new fitness function - old fitness function)
< threshold value
for j=1 to C size
map the arrangement of candidates, C[j],
to {a,,az,a3,a4}

construct a set of desired channel states

based on the relation shown in table 1
calculate its fitness function (FF[j]) by
equation (11)

end
find a data set which has a maximum FF
in j=1..C size : equation (12)
update the membership matrix U by the
data set
utilized as a center set @ equation (16)
derive a new center set by the U. equation

(17)

extract the candidates, {chz’cv‘%}, Jrom the
new center set
based on the relation shown in table 1°
equation (15)
end
end

5. EXPERIMENTAL STUDIES

In this section, the nonlinear blind equalizations
realized with the use of the simplex GA, GASA,
MFCM and MFCM_GW are taken into account to
demonstrate the effectiveness of the proposed
method. Four nonlinear channels in [11] and [18]

Randomly njlilite b tondidals,
Ep e Gy O

¥

Constaet w pussitie sl of ieined
sharned slales by mopping
{ e tata b 8,3, 8,3,

Exdrent e niw candisles
{000 G 5o} YOI e nigws conter set

Calbale bt uf ety
Hress ArnionsiFFl

i

Fiwd e dats out which
hiag & mepdensm FR

Difive & now Centes
set by o Gassian weigidsd
Yinoeg (1%
L4 No o d
{New FE-Cid FRK veshold
Update membeship mekix o
Yoy ay, (18 -,

Yes

Eptnated desire chennel siies

Fig. 2. The flowchart of the MFCM_GW.
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with different channel orders are discussed.
Channel 1 is shown in Table 1 while Channel 2,

3 and 4 are described as follows.

Channel 2: H(z)=0.5+1.0z"" , D =1D,=01,D,=-02,
D,=00, and d=1

Channel 3 H(z)=0.5+1.0z" , D =1,D,=0.0,D,=-0.9,
D,;=00, and d=1

Channel 4: H(z)=0.3482+0.8704z"' +0.348227 D, =1,
D,=02.D,=0.0,D,=0.0

and d=1

In channel 1, 2 and 3, the channel order p, the
equalizer order g, and the time delay d are 1, 1,
1, respectively. Thus for each of them, the output
of the equalizer should be % ~1) and the eight de-
sired channel states (27*'=8) composed of the
four channel output states (27" =4, a,0,,4,,a,) as
shown in Tahle 1 will be observed at the receiver
in the noise-free case. For channel 4, the sixteen
desired channel states with the eight channel out-
put states (2" =8, a,,a,,a,,--,4,) exist because the
channel order p is 2. The desired channel states,
{an,an), (ar,a2), (ag,a3), (az,a0), (as,ar), (asaz), (asas),

(as,a0), belong to Y, and (asas), (asas), (anar),

(as,a9), laras), (aras), (as,ar), (as,as) belong to ¥,
where %:@.%.4  gre 20578, 1.0219, -0.1679,
-0.7189, 1.0219, 0.1801, -0.7189 and -1.0758,
respectively. These sixteen desired channel states
for channel 4 are summarized in [13].

In the experiments, 10 independent simulations
for each of four channels with six different noise
levels (SNR=0,5,10,15,20 and 25db) are performed
with 1,000 randomly generated transmitted
symbols. Afterwards the obtained results are
averaged. The four search algorithms, simplex GA,
GASA, MFCM and MFCM_GW, have been im-
plemented in a batch mode to facilitate comparative
analysis. With this regard, we determine the nor—

malized root mean squared errors (NRMSE)

1 1 & .2
NRMSE-= o Vv &1~ (18)

where a is the dataset of optimal channel output
states, i, i5 the dataset of estimated channel output
states in the i simulation, and N is the total num-
ber of independent simulations (N=10). As shown
in Fig. 3, the proposed MFCM_GW comes with the
lowest NRMSE for all four channels, and the per—
formance differences are more severe under the
high noise levels such as SNR=0,510db. It is
caused by the fact that the MECM_GW uses the
Gaussian weights shown in equations (16) and (17)
to reduce the noise interference as mentioned in
section 4. A sample of 1,000 received symbols un-
der 5db SNR for channel 4 and its desired channel
states constructed from the estimated channel out-
put states by each of four search algorithms are
shown in Fig. 4.

In addition, we compared the search time of the
algorithms. The search times for each of four algo—
rithms are included in Table 2; notably, the MFCM
and MFCM_GW offer much higher search speed
for all channels and this could be attributed to their
simple structures. The basic architecture of
MFCM_GW is shared with the one of MFCM in-
troduced in [13]. However, the search speed for the
proposed MFCM_GW is much faster where the
noise level is going up (SNR=0,5,10db) as shown

CNINRMSE S
&
P

|31 EMSE]
"~
LoqENMSE]

naise

(¢c) channel 3 (d) channel 4

Fig. 3. NRMSE for channel 1, 2, 3, and 4.
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Fig. 4. A sample of received symbols for channel
4 and its desired channel states.

in the performance of NRMSE. Finally, we inves-
tigated the bit error rates (BER) when using the
Bayesian equalizer; refer to Table 3. It becomes
apparent that the BER with the estimated channel
output states realized by the MFCM_GW is almost
the same as the one with the optimal output states
for all four channels.

6. CONCLUSIONS

In this paper, we have introduced a new modified

Fuzzy C-Means clustering algorithm with
Gaussian weights and showed its application to
nonlinear channel blind equalization. In this ap-
proach, the highly demanding modeling task of an

unknown nonlinear channel becomes unnecessary

VOL. 11, NO. 12, DECEMBER 2008

Table. 2. The averaged search time( in sec) for
each of four algorithms.(Simulation
environment @ Pentiumd 2.8Ghz, 2G
Memory, code written in Matlab 7.1)

SNR| Simplex g [MECML_
Channel GA GASA |MFCM GW

Odb | 41.6844 | 41.6735 | 0.4438 | 0.3766
5db | 42.2844 | 42.5594 | 0.2266 | 0.2219
Channel | 10db | 42.6500 | 42.2641 | 0.1469 | 0.2203

1 15db | 42.4703 | 42.4078 | 0.1250 | 0.1188
20db | 41.9703 | 42.1688 | 0.1078 | 0.1469
25db | 40.0813 | 40.5563 | 0.1188 | 0.1344

0db | 40.8600 | 41.2141 | 0.5301 | 0.3188
5db | 41.9953 | 42.2703 | 0.3016 | 0.2594
Channel | 10db | 42.2578 | 42.1203 | 0.1750 | 0.1688

2 15db | 42.0000 | 42.1953 | 0.1532 | 0.1609
20db | 42.3781 | 42.3860 | 0.1516 | 0.1531
25db | 42.0125 | 41.8531 | 0.1547 | 0.1781

0db | 40.5922 | 40.8000 | 0.3578 | 0.3312
5db | 42.7297 | 42.1750 | 0.2109 | 0.196%
Channel | 10db | 42,5063 | 42.0656 | 0.1547 | 0.1656

3 15db | 42.2813 | 42.1969 | 0.1406 | 0.1234
20db | 42.2156 | 42.4906 | 0.1109 | 0.1266
25db | 41.8859 | 42.1313 | 0.1156 | 0.1406

Odb | 56.8953 | 56.7391 | 2.9844 | 2.6000
5db | 59.2610 | 59.6953 | 3.3172 | 1.3187
Channel | 10db | 59.9703 | 59.7000 | 2.0844 | 0.9750

4 15db | 60.6172 | 59.8954 | 1.6891 | 0.7063
20db | 60.2391 | 60.0985 | 3.4547 | 0.8922
25db | 58.3188 | 58.0703 | 1.6969 | 1.4969

as the construction of the desired channel states
is accomplished directly on a basis of the estimated
channel output states. It has been shown that the
proposed MFCM_GW with the Bayesian likelihood
treated as the fitness function offers better per-
formance in comparison to the solutions provided
by the simplex GA, GASA, and the previous ver—
sion of MECM approach. In particular, it succes-
sively estimates the channel output states with rel-
atively high speed and substantial accuracy even
when the received symbols are significantly cor-
rupted by a heavy noise. Therefore, the Bayesian
equalizer based on MFCM_GW can constitute a
viable solution for various problems of nonlinear
blind channel equalization. Our future research
pursuits are oriented towards the use of the
MFCM_GW under more complex optimization en-
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Table 3. Averaged BER(%){no. of errors/no. of transmitted symbols)

Chanmal Rl with optimal states| Simplex GA | GASA MFCM | MPCM_GW

Ocb 17.26 17.73 18.04 17,66 17.39

5db 0787 0785 08.00 0807 079

Channel 1 | 10dD 0L15 0116 0115 0118 0117
15db 0001 00.01 0001 0001 0001

20db 00.00 00.00 0000 00.00 0000

25db 00.00 00.00 0000 00.00 00.00

0db 27.94 2810 2801 28,50 2819

5db 15.18 15.21 15.39 15.70 15.21

Channel 2 | 10db 452 498 471 469 4,49
15db 0.20 0.24 0.5 023 023

20db 0.00 0.00 0.00 0.00 0.00

25db 0.00 0.00 0.00 0.00 0.00

Odb 19.64 2153 2149 19.91 19.87

5db 10.44 1052 1053 10.59 1053

Channel 3 | 10d 02.64 0266 0268 0268 0266
> 1sdb 0009 00.09 00.09 0009 0009

20db 00.00 00.00 00.00 00.00 0000

25db 00.00 00.00 0000 0000 0000

0db 21.03 2119 2165 2151 2149

5db 11.93 12.24 12.49 11.98 11.91

Channel 4 | 10db 411 468 487 465 486
15db 1.01 157 1.34 1.00 1.00

20db 0.09 2.42 2.8 0.09 0.09

25db 0.00 12 L13 0.00 0.00

vironments, such as those encountered when deal—

ng

with channels of high dimensionality and

equalizers of higher order.
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