• Title/Summary/Keyword: The Method of Characteristics

Search Result 36,660, Processing Time 0.067 seconds

A Study on the Friction Characteristics of Automotive Composites Brake Pads Using Taguchi Method (다구치 방법을 이용한 복합재료 자동차용 마찰재의 마찰특성에 관한 연구)

  • Kim, Yun-Hae;Lee, Jeong-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.660-666
    • /
    • 2002
  • It has many variables and factors to design the friction materials for automotive brake pads. The purpose of this study is to develop the proper method for design of low-cost and to know friction characteristics of each raw materials. For the purpose of examining the effect of each major raw materials, we used the Taguchi L9(3$^4$)orthogonal matrix and 1/5 scale dynamo machine for evaluation of the friction characteristics of composite brake pads. By adapting the Taguchi method, it is easy to investigate the influence of each component in complicated composites friction materials. After analyzing the testing results by the Taguchi method, the effect of factors and levels influenced friction behavior was studied.

A Study on the Environmental-Based Turning Characteristics of Multi-Purpose Agricultural Robots (다목적 농업 로봇의 농작업 환경 기반 선회 특성 연구)

  • Lee, Ji-Won;Kang, Minsu;Park, Huichang;Cho, Yongjun;Oh, Jangseok;Kim, Min-Gyu;Seo, Kap-Ho;Park, Min-Ro
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.4
    • /
    • pp.319-326
    • /
    • 2021
  • To improve the driving performance and work efficiency of the multi-purpose agricultural robot, this paper conducted a study on the turning and steering characteristics of the robot platform according to the characteristics of the working machine coupled to the multi-purpose agricultural robot considering the agricultural environment. First, the size and characteristics of the developed multi-purpose agricultural robot platform and working machine, and the targeted field farming work environment are analyzed. And based on this analysis, the problems that arise in multi-purpose robots with conventional turning methods are quantitatively presented. And to overcome this problem, an improved turning and steering method for multi-purpose agricultural robots is proposed considering the characteristics of various workstations and the agricultural working environment. Finally, by applying the proposed method, the turning characteristics of the multi-purpose agricultural robot according to the working machine are analyzed and the effectiveness of the proposed method is verified.

A Study of the Current-Diagram Method for Calculating Induction Motor Characteristics with Adjustable Frequency (가변주파수에 있어서 유도잔동기특성의 도식산정법에 관한 연구 제3보)

  • Min Ho Park
    • 전기의세계
    • /
    • v.18 no.5
    • /
    • pp.20-25
    • /
    • 1969
  • The development of the frequency convertors using semiconductors devices makes it possible to control the speed of A.C. motors easily. It is now economically feasible to provide them with power at adjustable frequency using silicon-controlled rectifier (or thyristor) inverters. In such a case, in order to operate an induction motor efficiently over a wide speed range, it must be supplied from a variable frequency source of which frequency is adjustable over the speed range of the motor. It is desired to observe the changes in characteristics as primary current, torque-speed of induction motor etc. at any optional frequency. Although the characteristics can be obtained by means of the conventional methods, they require very complicated precedures of calculations. The Current Diagram Method in this paper suggests a new approach to simpler calculations of the characteristics, using the motor constants at reference frequency. The conclusions of this study are summarized as follows: 1) The equations of stator current at adjusted frequency were derived to construct graphical chart and the current circle required for the Current Diagram Method. 2) The radius, center of the current circle and the vector locus, the basis for calculating the characteristics, at any desired frequency could be easily determined with the aid of both the derived graphical chart and current circle at reference frequency. 3) The method was shown to be applicable to the various types of 3-phase induction motors and also dealt with its application to the split-phase, condenser motors.

  • PDF

Flutter characteristics of a Composite Wing with Various Ply Angles (복합재료날개의 적층각에 대한 플러터 특성 연구)

  • Yoo, Jae-Han;Kim, Dong-Hyun;Lee, In
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.126-130
    • /
    • 2000
  • In this study, flutter characteristics of a composite wing have been studied for the variation of laminate angles in the subsonic, transonic and supersonic flow regime. The laminate angles are selected by the aspect of engineering practice such as 0, $\pm$45 and 90 degrees. To calculate the unsteady aerodynamics for flutter analysis, the Doublet Lattice Method(DLM) in subsonic flow and the Doublet Point Method(DPM) in supersonic flow are applied in the frequency domain. In transonic flow, transonic small disturbance(TSD) code is used to calculate the nonlinear unsteady aerodynamics in the time domain. Aeroelastic governing equation has been solved by v-g method in the frequency domain and also by Coupled Time-Integration Method(CTIM) in the time domain. from the results of present study, characteristics of free vibration responses and aeroelastic instabilities of a composite wing are presented for the set of various lamination angles in the all flow range.

  • PDF

A Study on the Design Development Methods and the Characteristics of Zero Waste Fashion Design (최소폐기물 패션디자인의 디자인 개발방식 및 특성 연구)

  • Han, Seung Soo;Suh, Seung Hee
    • Journal of the Korean Society of Costume
    • /
    • v.66 no.4
    • /
    • pp.61-76
    • /
    • 2016
  • The importance of environment has come into focus recently, and this has led to increased attention on zero waste fashion design as a method to minimize waste from the production stage of fashion goods. The purpose of this study was to analyze the development method types and the characteristics of zero waste fashion design in order to study the eco-friendly meanings of zero waste fashion design, as well as its meaning as creative design development methods. Through the case analysis of recent designs, the design types of zero waste fashion design were largely classified into cut and sew, folding, draping, and non-woven types, and they were classified again according to the characteristics of production process. According to the result of analyzing fashion design development methods of zero waste fashion designs based on the process of completing design, they were classified into pattern making, computer programming, draping, assembling of the unit, and non-woven moulding methods, and the aspect of combined use rather than utilization of one method appeared. Formative characteristics of zero waste fashion design included decorative beauty, formative beauty, and transformable beauty and its design characteristics were fortuity and unexpected properties, breaking stereotypes, structural flexibility and futuristic innovation.

Resonance Characteristics and Radiation Characteristics of a Spherical Patch on a Dielectric Sphere (구형 유전체 위에 있는 구형 패치의 공진 특성과 방사 특성)

  • Jeong, Yi-Ru;Hong, Ic-Pyo;Lee, Myung-Gun;Chun, Hueng-Jae;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.4
    • /
    • pp.515-523
    • /
    • 2012
  • In this paper, the resonance characteristics and radiation characteristics of a spherical patch on a dielectric sphere are analyzed. Resonance characteristics can be obtained from the resonant frequency and the quality factor. Radiation characteristics can be also analyzed from the E-field in the far region. In order to calculate these parameters, spectral domain analysis method is applied. Algebraic equation can be obtained in spectral domain through Vector Legendre transform pair and Galerkin's method. So, efficient calculation is possible numerically. It is investigated that radius, curvature of a spherical patch, and dielectric constant of a dielectric sphere have an effect on characteristics of a spherical patch.

Time-varying characteristics analysis of vehicle-bridge interaction system using an accurate time-frequency method

  • Tian-Li Huang;Lei Tang;Chen-Lu Zhan;Xu-Qiang Shang;Ning-Bo Wang;Wei-Xin Ren
    • Smart Structures and Systems
    • /
    • v.33 no.2
    • /
    • pp.145-163
    • /
    • 2024
  • The evaluation of dynamic characteristics of bridges under operational traffic loads is a crucial aspect of bridge structural health monitoring. In the vehicle-bridge interaction (VBI) system, the vibration responses of bridge exhibit time-varying characteristics. To address this issue, an accurate time-frequency analysis method that combines the autoregressive power spectrum based empirical wavelet transform (AR-EWT) and local maximum synchrosqueezing transform (LMSST) is proposed to identify the time-varying instantaneous frequencies (IFs) of the bridge in the VBI system. The AR-EWT method decomposes the vibration response of the bridge into mono-component signals. Then, LMSST is employed to identify the IFs of each mono-component signal. The AR-EWT combined with the LMSST method (AR-EWT+LMSST) can resolve the problem that LMSST cannot effectively identify the multi-component signals with weak amplitude components. The proposed AR-EWT+LMSST method is compared with some advanced time-frequency analysis techniques such as synchrosqueezing transform (SST), synchroextracting transform (SET), and LMSST. The results demonstrate that the proposed AR-EWT+LMSST method can improve the accuracy of identified IFs. The effectiveness and applicability of the proposed method are validated through a multi-component signal, a VBI numerical model with a four-degree-of-freedom half-car, and a VBI model experiment. The effect of vehicle characteristics, vehicle speed, and road surface roughness on the identified IFs of bridge are investigated.

Analysis of the influence of panel characteristics on odor measurement based on the air dilution olfactory method in Korea

  • Kim, Sun-Tae;Lee, Seokjun;Yim, Bongbeen
    • Environmental Engineering Research
    • /
    • v.24 no.1
    • /
    • pp.91-98
    • /
    • 2019
  • This study was to objectify differences in the results of odor testing according to the characteristics of panel members that participate in air dilution olfactory method (ADOM) testing. When differences in the results of olfactory testing were reviewed in relation to characteristics of the panelists, the result of entire panels for the site boundary Proficiency Testing Materials (PTMs) showed no difference according to panelist sex, age, smoking status, and past participation in ADOM tests. As for the outlet PTMs, distinct differences appeared in relation to the smoking status and age of panelists. The frequency distribution for all the panelists (Dev($D/T_{total}$)) showed a form similar to a normal distribution, so it is thought to be more appropriate for the review of effect of panelist characteristics on the result of air dilution olfactory tests. In addition, the ADOM testing method implemented as the standard method for odor compounds in Korea (Dev($D/T_3$)) will have to be implemented along with a concurrent assessment, for the purpose of identifying the effect of panelist characteristics on administrative dispositions against malodors.

Risk Assessment Technique and its Application for Complex Equipment(Focused on the Method for Choosing Quality and Risk Characteristics) (복합시스템 장비의 위험평가 기술 및 적용에 관한 연구(품질 및 리스크 특성 선정방법 중심으로))

  • 김종걸;정진호
    • Journal of the Korea Safety Management & Science
    • /
    • v.6 no.2
    • /
    • pp.91-101
    • /
    • 2004
  • Consumers require various quality characteristics including safety. The reduction of risk concerned on product safety becomes an urgent issue in leading companies. The strategy for customer satisfaction by choosing attractive quality characteristic is not enough for risk reduction in view of producer. This paper presents a method for choosing quality characteristics and risk characteristics by integrating QFD based on quality requirements and AHP based on safety requirements, also shows its application for complex equipment.

A Study on the Optimum Modification of Dynamic Characteristics of Stiffened Plate Structure of Ship (선박의 보강판 구조물의 동특성의 최적 변경법에 관한 연구)

  • 박성현;박석주;고재용
    • Journal of the Korean Institute of Navigation
    • /
    • v.25 no.1
    • /
    • pp.45-52
    • /
    • 2001
  • The purpose of this study is the optimum modification of dynamic characteristics of stiffened plate structure. In the method of the optimization, finite element method(FEM), sensitivity analysis and optimum structural modification method are used. To begin with, using FEM, the dynamic characteristics of stiffened plate structure is analyzed. Next, rate of change of dynamic characteristics by the change of design variable is calculated using the sensitivity analysis. Then, amount of change of design variable is calculated using this sensitivity value and optimum structural modification method. The change of natural frequency is made to be an objective function. Thickness of plate and cross section moment become a design variable. It is shown that the results are effective in the optimum modification for dynamic characteristics of the stiffened plate structure.

  • PDF