• Title/Summary/Keyword: The Laplace transform

Search Result 277, Processing Time 0.027 seconds

Note on Stochastic Orders through Length Biased Distributions

  • Choi, Jeen-Kap;Lee, Jin-Woo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.10 no.1
    • /
    • pp.243-250
    • /
    • 1999
  • We consider $Y=X{\lambda}Z,\;{\lambda}>0$, where X and Z are independent random variables, and Y is the length biased distribution or the equilibrium distribution of X. The purpose of this paper is to consider the distribution of X or Y when the distribution of Z is given and the distribution of Z when the distribution of X or Y is given, In particular, we obtain that the necessary and sufficient conditions for X to be $X^{2}({\upsilon})\;is\;Z{\sim}X^{2}(2)\;and\;for\;Z\;to\;be\;X^{2}(1)\;is\;X{\sim}IG({\mu},\;{\mu}^{2}/{\lambda})$, where $IG({\mu},\;{\mu}^{2}/{\lambda})$ is two-parameter inverse Gaussian distribution. Also we show that X is smaller than Y in the reverse Laplace transform ratio order if and only if $X_{e}$ is smaller than $Y_{e}$ in the Laplace transform ratio order. Finally, we can get the results that if X is smaller than Y in the Laplace transform ratio order, then $Y_{L}$ is smaller than $X_{L}$ in the Laplace transform order, and that if X is smaller than Y in the reverse Laplace transform ratio order, then $_{\mu}X_{L}$ is smaller than $_{\nu}Y_{L}$ in the Laplace transform order.

  • PDF

COMBINED LAPLACE TRANSFORM WITH ANALYTICAL METHODS FOR SOLVING VOLTERRA INTEGRAL EQUATIONS WITH A CONVOLUTION KERNEL

  • AL-SAAR, FAWZIAH M.;GHADLE, KIRTIWANT P.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.22 no.2
    • /
    • pp.125-136
    • /
    • 2018
  • In this article, a homotopy perturbation transform method (HPTM) and the Laplace transform combined with Taylor expansion method are presented for solving Volterra integral equations with a convolution kernel. The (HPTM) is innovative in Laplace transform algorithm and makes the calculation much simpler while in the Laplace transform and Taylor expansion method we first convert the integral equation to an algebraic equation using Laplace transform then we find its numerical inversion by power series. The numerical solution obtained by the proposed methods indicate that the approaches are easy computationally and its implementation very attractive. The methods are described and numerical examples are given to illustrate its accuracy and stability.

Estimated spectrum of a 6MV X-ray (Laplace transform 방법에 의한 x-ray의 에너지 스펙트럼 추정)

  • Yoo, Myung-Jin
    • Progress in Medical Physics
    • /
    • v.4 no.2
    • /
    • pp.37-47
    • /
    • 1993
  • The quality of radiation for a high energy x-ray beam can be specified by its attenuation curve in a selected material. The inverse Laplace transform of the attenuation curve can be used as an approximate indication of the energy spectrum of the beam. We have made a comparative investigation of the estimated spectrum obtained by the Laplace transform analysis of the transmitted exposure data measured in an absorption study of a 6MV x-ray beam. Two of existing transform pair models have been investicated and discussed.

  • PDF

(p, q)-LAPLACE TRANSFORM

  • KIM, YOUNG ROK;RYOO, CHEON SEOUNG
    • Journal of applied mathematics & informatics
    • /
    • v.36 no.5_6
    • /
    • pp.505-519
    • /
    • 2018
  • In this paper we define a (p, q)-Laplace transform. By using this definition, we obtain many properties including the linearity, scaling, translation, transform of derivatives, derivative of transforms, transform of integrals and so on. Finally, we solve the differential equation using the (p, q)-Laplace transform.

A TYPE OF FRACTIONAL KINETIC EQUATIONS ASSOCIATED WITH THE (p, q)-EXTENDED 𝜏-HYPERGEOMETRIC AND CONFLUENT HYPERGEOMETRIC FUNCTIONS

  • Khan, Owais;Khan, Nabiullah;Choi, Junesang;Nisar, Kottakkaran Sooppy
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.2
    • /
    • pp.381-392
    • /
    • 2021
  • During the last several decades, a great variety of fractional kinetic equations involving diverse special functions have been broadly and usefully employed in describing and solving several important problems of physics and astrophysics. In this paper, we aim to find solutions of a type of fractional kinetic equations associated with the (p, q)-extended 𝜏 -hypergeometric function and the (p, q)-extended 𝜏 -confluent hypergeometric function, by mainly using the Laplace transform. It is noted that the main employed techniques for this chosen type of fractional kinetic equations are Laplace transform, Sumudu transform, Laplace and Sumudu transforms, Laplace and Fourier transforms, P𝛘-transform, and an alternative method.

ACCESS TO LAPLACE TRANSFORM OF fg

  • HWAJOON KIM;SOMCHAI LEKCHAROEN
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.1
    • /
    • pp.83-93
    • /
    • 2023
  • We would like to consider Laplace transform of the form of fg, the form of product, and applies it to Burger's equation in general case. This topic has not yet been addressed, and the methodology of this article is done by considerations with respect to several approaches about the transform of the form of f g and the mean value theorem for integrals. This paper has meaning in that the integral transform method is applied to solving nonlinear equations.

SOME CLASSES OF INTEGRAL EQUATIONS OF CONVOLUTIONS-PAIR GENERATED BY THE KONTOROVICH-LEBEDEV, LAPLACE AND FOURIER TRANSFORMS

  • Tuan, Trinh
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.3
    • /
    • pp.485-494
    • /
    • 2021
  • In this article, we prove the existence of a solution to some classes of integral equations of generalized convolution type generated by the Kontorovich-Lebedev (K) transform, the Laplace (𝓛) transform and the Fourier (F) transform in some appropriate function spaces and represent it in a closed form.

CERTAIN INTEGRAL TRANSFORMS OF EXTENDED BESSEL-MAITLAND FUNCTION ASSOCIATED WITH BETA FUNCTION

  • N. U. Khan;M. Kamarujjama;Daud
    • Honam Mathematical Journal
    • /
    • v.46 no.3
    • /
    • pp.335-348
    • /
    • 2024
  • This paper deals with a new extension of the generalized Bessel-Maitland function (EGBMF) associated with the beta function. We evaluated integral representations, recurrence relation and integral transforms such as Mellin transform, Laplace transform, Euler transform, K-transform and Whittaker transform. Furthermore, the Riemann-Liouville fractional integrals are also discussed.

The study of the calculation of energy consumption load for heating and cooling in building using the Laplace Transform solution

  • Han, Kyu-Il
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.50 no.3
    • /
    • pp.292-300
    • /
    • 2014
  • The Laplace Transform solution is used as a mathematical model to analyse the thermal performance of the building constructed using different wall materials. The solution obtained from Laplace Transform is an analytical solution of an one dimensional, linear, partial differential equation for wall temperature profiles and room air temperatures. The main purpose of the study is showing the detail of obtaining solution process of the Laplace Transform. This study is conducted using weather data from two different locations in Korea: Seoul, Busan for both winter and summer conditions. A comparison is made for the cases of an on-off controller and a proportional controller. The weather data are processed to yield hourly average monthly values. Energy consumption load is well calculated from the solution. The result shows that there is an effect of mass on the thermal performance of heavily constructed house in mild weather conditions such as Busan. Building using proportional control experience a higher comfort level in a comparison of building using on-off control.