• Title/Summary/Keyword: The Constraint Programming

Search Result 260, Processing Time 0.025 seconds

OPTIMAL CONSUMPTION, PORTFOLIO, AND LIFE INSURANCE WITH BORROWING CONSTRAINT AND RISK AVERSION CHANGE

  • Lee, Ho-Seok
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.29 no.2
    • /
    • pp.375-383
    • /
    • 2016
  • This paper investigates an optimal consumption, portfolio, and life insurance strategies of a family when there is a borrowing constraint and risk aversion change at the time of death of the breadwinner. A CRRA utility is employed and by using the dynamic programming method, we obtain analytic expressions for the optimal strategies.

On a Two Dimensional Linear Programming Knapsack Problem with the Extended GUB Constrain (확장된 일반상한제약을 갖는 이차원 선형계획 배낭문제 연구)

  • Won, Joong-Yeon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.27 no.1
    • /
    • pp.25-29
    • /
    • 2001
  • We present a two dimensional linear programming knapsack problem with the extended GUB constraint. The presented problem is an extension of the cardinality constrained linear programming knapsack problem. We identify some new properties of the problem and derive a solution algorithm based on the parametric analysis for the knapsack right-hand-side. The solution algorithm has a worst case time complexity of order O($n^2logn$). A numerical example is given.

  • PDF

The Maximin Linear Programming Knapsack Problem With Extended GUB Constraints (확장된 일반상한제약을 갖는 최대최소 선형계획 배낭문제)

  • 원중연
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.26 no.3
    • /
    • pp.95-104
    • /
    • 2001
  • In this paper, we consider a maximin version of the linear programming knapsack problem with extended generalized upper bound (GUB) constraints. We solve the problem efficiently by exploiting its special structure without transforming it into a standard linear programming problem. We present an O(n$^3$) algorithm for deriving the optimal solution where n is the total number of problem variables. We illustrate a numerical example.

  • PDF

Intelligent Shopping Agents Using Finite Domain Constraint under Semantic Web (의미웹에서 한정도메인 제약식을 이용한 지능형 쇼핑에이전트 : CD 쇼핑몰의 경우를 중심으로)

  • Kim, Hak-Jin;Lee, Myung Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.12 no.4
    • /
    • pp.73-90
    • /
    • 2006
  • When a consumer intends to purchase products through Internet stores, many difficulties are met because of limitations of the current search engines and the current web structure, and lack of tools supporting decision-makings. This paper raises an Internet shopping problem and proposes a framework of decision making process to settle it with an intelligent agent based on Semantic Web and Finite Domain Constraint. The agent uses finite domain constraint programming as modeling and solution methods for the decision problem under the Semantic Web environment.

  • PDF

A Simulation Study on a Variant Policy of Inventory Replenishment for the Order Consolidation - A Case of Steel Industry (주문 집약을 위한 재고 변용 모델 연구: 제철산업의 소로트 주문 집약 활용을 중심으로)

  • Jung, Jae-Heon
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.10a
    • /
    • pp.10-26
    • /
    • 2005
  • In our model, we keep inventory to satisfy uncertain demands which arrives irregularly. In this situation, we have additional two constraints. First, we need to have certain amount of order consolidation (consolidation constraint) for the orders to replenish the inventory because of production or purchase constraint. And also, if we order at a certain date which was set by administrative convenience, we have amount constraint to order the consolidated order demands (capacity constraint). We showed this variant inventory policy is needed in steel industry and note that there will be possible similar case in industry. To deal with this case, we invented a variant replenishment policy and show this policy is superior to other possible polices in the consolidation constraint case by extensive simulation. And we derive a combined solution method for dealing with the capacity constraints in addition to the consolidation constraints. For this, we suggest a combined solution method of integer programming and simulation.

  • PDF

A Simulation Study on a Variant Policy of Inventory Replenishment for the Order Consolidation : A Case of Steel Industry (주문 집약을 위한 재고 변용 모델 연구 : 제철산업의 소로트 주문 집약 활용을 중심으로)

  • Jung Jae-Heon
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.31 no.2
    • /
    • pp.99-112
    • /
    • 2006
  • In our model, we keep inventory to satisfy uncertain demands which arrives irregularly. In this situation, we have additional two constraints. First, we need to have certain amount of order consolidation (consolidation constraint) for the orders to replenish the inventory because of production or purchase amount constraint. And also, if we order at a certain date which was set by administrative convenience, we have capacity constraint to order the consolidated order demands (capacity constraint). We show this variant inventory policy is needed in steel industry and note that there will be possible similar case in industry. To deal with this case, we invent a variant replenishment policy and show this policy is superior to other possible polices in the consolidation constraint case by extensive simulation. And we derive a combined solution method for dealing with the capacity constraints in addition to the consolidation constraints. For this, we suggest a combined solution method of integer programming and simulation.

Integer Programming-based Local Search Technique for Linear Constraint Satisfaction Optimization Problem (선형 제약 만족 최적화 문제를 위한 정수계획법 기반 지역 탐색 기법)

  • Hwang, Jun-Ha;Kim, Sung-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.9
    • /
    • pp.47-55
    • /
    • 2010
  • Linear constraint satisfaction optimization problem is a kind of combinatorial optimization problem involving linearly expressed objective function and complex constraints. Integer programming is known as a very effective technique for such problem but require very much time and memory until finding a suboptimal solution. In this paper, we propose a method to improve the search performance by integrating local search and integer programming. Basically, simple hill-climbing search, which is the simplest form of local search, is used to solve the given problem and integer programming is applied to generate a neighbor solution. In addition, constraint programming is used to generate an initial solution. Through the experimental results using N-Queens maximization problems, we confirmed that the proposed method can produce far better solutions than any other search methods.

On Solving the Tree-Topology Design Problem for Wireless Cellular Networks

  • Pomerleau Yanick;Chamberland Steven;Pesant Gilles
    • Journal of Communications and Networks
    • /
    • v.8 no.1
    • /
    • pp.85-92
    • /
    • 2006
  • In this paper, we study a wireless cellular network design problem. It consists of selecting the location of the base station controllers and mobile service switching centres, selecting their types, designing the network into a tree-topology, and selecting the link types, while considering the location and the demand of base transceiver stations. We propose a constraint programming model and develop a heuristic combining local search and constraint programming techniques to find very good solutions in a reasonable amount of time for this category of problem. Numerical results show that our approach, on average, improves the results from the literature.

Mathematical Programming Approach for the Multiple Forest Land Use -Comparison between STEM and Constraint Method- (다목적(多目的) 산지이용(山地利用)을 위한 수리계획법(數理計劃法)의 비교(比較))

  • Yoo, Byoung Il
    • Journal of Korean Society of Forest Science
    • /
    • v.76 no.4
    • /
    • pp.361-369
    • /
    • 1987
  • The idea of multiple-use of forest land is tile one field of economics to improve the efficiency of forest land, and is the famous management technique widely used in the developed forestry country. This paper introduces the STEM and the constraint method, which is one kind of mathematical programming techniques used for multiple forest Land use, and discusses the differences between these two methods by using the hypothetical data.

  • PDF

Evaluation of Environmental Performance of Energy Systems employing Market Allocation Model in Building Sector in Korea (시장분배모형을 이용한 건물부문 에너지 시스템 환경성능평가)

  • Park, Tong-So
    • KIEAE Journal
    • /
    • v.2 no.4
    • /
    • pp.65-72
    • /
    • 2002
  • In this study, the evaluation of environmental performance of the building energy system of domestic commercial sector was carried out. Based on the theory of linear programming model, we established an evaluation model satisfying object functions and constraint conditions. Employing the model, the evaluation of building energy system was performed under the consideration of cost and environmental constraint conditions. As an evaluation tool, MARKAL (MARKet Allocation) known as a market distribution model was employed. We analyzed scenarios of Case I (Base Scenarios) through Case IX established by the combination of the components of building energy system such as glazing, building skin, core, and heat source system. According to the results of the evaluation, highest contribution on the useful energy demand was obtained from the building energy system combined with solar heat source system, when the total amounts of $CO_2$ exhaust as an environmental constraint condition is assumed to be the level of 1995.