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On Solving the Tree-Topology Design Problem for Wireless
Cellular Networks

Yanick Pomerleau, Steven Chamberland, and Gilles Pesant

Abstract: In this paper, we study a wireless cellular network design
problem. It consists of selecting the location of the base station
controllers and mobile service switching centres, selecting their
types, designing the network into a tree-topology, and selecting the
link types, while considering the location and the demand of base
transceiver stations. We propose a constraint programming model
and develop a heuristic combining local search and constraint pro-
gramming techniques to find very good solutions in a reasonable
amount of time for this category of problem. Numerical results
show that our approach, on average, improves the results from the
literature.

Index Terms: Cellular wireless networks, constraint programming
(CP), local search, topological design.

I. INTRODUCTION

In a typical wireless cellular network, the area of coverage
is geographically divided into cells and the network topology
1s hierarchically organized in order to reduce costs. Each cell
is equipped with a base transceiver station (BTS) that contains
the radio transceivers providing the radio interface with mobile
stations. One or more BTSs are connected to a base station con-
troller (BSC) that provides a number of functions related to re-
source and mobility management as well as operation and main-
tenance for the overall radio network. One or more BSCs are
connected to a mobile switching center (MSC) or switch that
controls call setup and call routing while performing many other
functions provided by a conventional communications switch.
An MSC can be connected to other MSCs or networks such as
the public switched telephone network (PSTN), in order to pro-
vide a larger coverage.

Cellular wireless network service providers dedicate an im-
portant proportion of their budget to acquire, install, and main-
tain the facilities that carry traffic from cell sites to switches and
other facilities (Fig. 1). Typically, the design of cellular wireless
networks requires:

1. The analysis of radio-wave propagation and/or the field

topology to identify a set of possible base station locations.

2. The selection of a least-cost subset of locations (network
nodes) as hubs where the traffic is to be aggregated and
switched.

3. The assignment of each cell to a switch while taking into
account a certain number of constraints including capacity
constraints, routing-diversity to assure reliability, handoffs
frequency, and so on.

Manuscript received October 12, 2003; approved for publication by Wha Sook
Jeon, Division III Editor, August 30, 2005.

The authors are with the Department of Computer Engineering, Ecole
Polytechnique de Montréal, Montréal, Canada, email: {yanick.pomerleau,
steven.chamberland, gilles.pesant} @polymtl.ca.

Public switched telephone
network (PSTN)

MSC

BSC

Fig. 1. The network sub-system of a cellular wireless network.

4. The selection of the type of links between the nodes or

network elements.

This paper focuses on points 2, 3, and 4. We are interested
in the global design problem of such networks. The proposed
model deals with: Selecting the location of the BSCs and MSCs;
selecting the BSC and MSC types; designing the network topol-
ogy; selecting the link types.

We make the following assumptions about the organization
of the network: gCl) assignment constraints specify that each
component is connected to exactly one other, such as a BTS
to a BSC and a BSC to an MSC; (C2) uniqueness constraints
specify that at most one component is installed at each site; (C3)
capacity constraints are app_liéd on links, BSCs, and MSCs; (C4)
traffic flow conservation coflstraints should be satisfied.

The following information is supposed to be known: (A1) the
location of the BTSs and their types; (A2) the traffic (in Erlang)
between BTSs and between each BTS and the public network;
(A3) the location of potential sites to ijiS_tall the BSCs and the
MSCs; (A4) the cost and the capacity of the components (BSCs,
MSCs, and links) of different types.

The objective is to minimize the cost of the design, including
the cost of the equipment and their installation.

Many aspects of the overall design problem correspond to
well-known operational research problems, such as graph par-
titioning [1], [2] or p-fixed hubs location [3]. Since these prob-
lems are NP-hard, exact algorithms are inappropriate in practice
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for moderate and large size instances. As a result, heuristic ap-
proaches have been largely used for solving these aspects of the
design problem [1]-[9].

The literature abounds on network planning and the optimiza-
tion of cellular wireless networks [10] but few have addressed
the design problem as a whole. Merchant and Sengupta [1],
[2] studied only the assignment problem. Their algorithm starts
from an initial solution, which they attempt to improve through
a series of greedy moves, while avoiding to be trapped in a lo-
cal minimum. The moves used to escape a local minimum ex-
plore only a very limited set of options. These moves depend
on the initial solution and do not necessarily lead to a good fi-
nal solution. Other heuristics, strongly inspired by that of Mer-
chant and Sengupta, were proposed by Saha, Mukherjee, and
Bhattacharya [11]. These heuristics are based on the formation
of cell clusters related to the same switch. The cell where the
switch resides is the root of the cluster, then each cluster is ex-
tended by judiciously adding other cells. Several versions of the
algorithm were proposed. In general, these algorithms improve
the results of Merchant and Sengupta but nevertheless remain
ineffective for designing large size cellular wireless networks.
André, Pesant, and Pierre [4] also studied the assignment prob-
lem and used a variable neighborhood search metaheuristic [12]
to solve it. The neighborhoods are based on reassignment and
redistribution of the BTSs to the switches. The initial solution
is found by constraint programming. This algorithm improved
the solutions found by the other heuristic methods such as sim-
ulated annealing [9] and tabu search [8] in quality and in CPU
time. Sohn and Parc [3] studied the p hub location problem
that consists of finding the location of p hubs and the cells’ as-
signment so that the total transportation cost is minimized. The
authors have proposed a mixed integer formulation to solve the
problem. The computational results show that the model works
well. Only few instances provided non-integer solutions, less
than 0.02%. For those instances, integer solutions are obtained
quickly with a branch and bound method. '

Cox and Sanchez [7] studied the whole design process and
used a tabu search metaheuristic, with embedded knapsack and
network flow subproblems to design a least-cost telecommu-
nications network to carry cell site traffic to wireless switches

while meeting survivability, capacity, and technical compatibil-

ity constraints. In this context, each optimization problem is
solved separately while taking into account its impact on the
other ones. Because they added some network survivability con-
straints, some switches must be assigned to at least two other
switches. Their results illustrated that optimal solutions can be
found. The cost difference between 20% and 100% of switches
with survivability constraints is very small (less than 1%). The
global design problem defined here was considered by Cham-
berland and Pierre [6]. The authors proposed a mathematical
programming model for this problem, demonstrated that it is
NP-hard and proposed a tabu search (TS) algorithm. The TS
algorithm determines a set of BSCs and a set of MSCs to move
from a solution to another while taking into account tabu moves
and the aspiration criterion. The results showed that good solu-
tions can be found with this approach (within 6%, on average,
from a proposed lower bound) in under an hour of CPU time.

The lower bound used to evaluate the quality of the solutions
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obtained by this TS algorithm comes from an exact algorithm
applied to a relaxation of the problem. Therefore it is difficult
to know what proportion of the gap is an optimality gap. In
this context, it is interesting to investigate other avenues to con-
firm or improve the quality of the solution obtained by the TS
algorithm. The tree-topology design problem lends itself well
to modeling in constraint programming (CP) [13]. In this pa-
per, we explore such an avenue to solve the design problem of
wireless cellular networks. The paper is organized as follows.
Section II presents the constraint programming model for the
global design problem of cellular wireless networks and, in Sec-
tion III, a heuristic is proposed. Section IV presents numerical
results and we conclude in Section V.

II. THE CONSTRAINT PROGRAMMING MODEL

In this section, we propose a CP model for the global design
of the network subsystem of cellular wireless networks. This
model is developed for the second generation of cellular net-
works using, for instance, global system for mobile communi-
cations (GSM), code division multiple access (CDMA), or time
division multiple access (TDMA) systems [14]. However, it can
also be used for the design of third generation networks using,
for instance, wideband CDMA (WCDMA) or CDMA2000 sys-
tems [14], if a tree-topology architecture is selected for the net-
work subsystem.

The application of CP to the resolution of combinatorial prob-
lems rests on the notion of finite domain variables. For each
such variable, the (finite) set of all possible values it may take,
called its domain, is saved and updated as the computation pro-
gresses. Constraints are imposed on the combinations of values
these variables may take and are enforced using specialized fil-
tering algorithms, either built-in or user defined, that work by
removing inconsistent values from the domains. Ideally, the
algorithm should remove all inconsistent values, that is, those
for which no feasible combination of values for remaining vari-
ables can be found, but this cannot always be achieved with rea-
sonable efficiency. The constraints (or, more precisely, their al-
gorithms) interact through shared variables (or, more precisely,
their domains). Accordingly, our model for the problem at hand
is composed of such constraints.

This filtering out of inconsistent values will not be sufficient
in general to obtain a solution directly. Search is necessary, usu-
ally taking the form of an enumeration tree whose branches cor-
respond to fixing a variable to a value in its current domain.
Many strategies for choosing the next variable to fix and the
next value to try have been devised and are often problem de-
pendent. At each node of the tree, more filtering can occur since
at least one of the domains has shrunk. For more details about
constraint programming see [13].

The following notation is used throughout the paper.

Sets:
o 1, the set of BTSs;
- «;, the capacity (in circuits) of the BTS¢ € I;
- 1, the number of links necessary to connect it to a BSC;
e J, the set of BSC sites;
« K, the set of MSC sites;
o L, the set of links types;
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— e, the capacity (in circuits) of a link of type £ € L;
o S, the set of BSC types;
— «y, the capacity (in circuits) of a BSC of type s € S;
- ni , the maximum number of BTS interfaces of a BSC of
type s € S
- n;‘F, the maximum number of MSC interfaces of a BSC of
type s € S
o T, the set of MSCs types;
— o, the capacity (in circuits) of a MSC of type t € T';
- nf , the maximum number of BSC interfaces of a MSC of
typet € T.
Note that all of these sets are disjoint.
Bandwidth parameters:
e g, the average number of communications per hour from
BTSie ItoBTS i e I,
* g;p, the average number of communications per hour from
BTS i € I to the public network;
s gpi, the average number of communications per hour from
the public network to BTS ¢ € [.
Cost parameters:
¢ a5, the link and interface card costs (including the installa-
tion cost) for connecting BTS ¢ € I to a BSC at site j € J;
o bgji, the link and interface card costs (including the instal-
lation cost) for connecting a BSC at site j € J to an MSC
at site k € K through a link and interfaces of type £ € L;
o ¢, the cost of a BSC of type s € S and installing it at site
jed;
o di, the cost of an MSC of type ¢ € T and installing it at site
ke K.
Decision variables:
o v;, the BSC site assigned to the BTS ¢ € [
+ wj;, the MSC site assigned to the BSC at site j € J;
» 1 , the BSC type installed at site j € J;
e Yk, the MSC type installed at site k£ € K;
e zjs, the number of links of type £ € L installed fromi the
BSCsite j € J to a MSC.
Traffic variables:
e 1;, the traffic (in Erlang) from BTS ¢ € I to a BSC;
o t;, the traffic (in Erlang) from BSC j € J to a MSC.

A. The Model

Constraints (C1) and (C2) are already enforced by the choices
of decision variables. For example, the v; variables ensure that
the BTS ¢ is connected to exactly one BSC. Indeed, the variables
can only be assigned to one value of their domain. The other
constraints are explicitly enforced in the model.

The constraint programming model for the design problem of
wireless cellular networks, noted design problem for wireless
cellular networks (DPWCN), can now be given by

min Z iy, + Z Z Zﬂbgjwj + Z c]w_‘,- =+ Z dzk

i€l JEJ Lel jeJ keK

(D

where a;,, is the link and interface card costs (including the
installation cost) for connecting BTS i € [ to a BSC at site
v; € J, byjy, is the link and interface card costs (including the
installation cost) for connecting a BSC at site j € J to an MSC
at site w; € K through a link and interfaces of type £ € L, c;”j is
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the cost of a BSC of type z; € S and of installing it at site j € J
and d}*, the cost of an MSC of type yi € T and of installing it
atsite k € K.

Subject to

BSC capacity constraint (BTS interface level)

Z((Uz‘ = )m:) <ng,,

il

jed @
where (v; = j) is a 0-1 expression such that (v; = j) is equal
to 1 if and only if v; = j.

BSC capacity constraint (MSC interface level)

Doze<nl, jeld 3)
feL
BSC capacity constraint (switch fabric level)
S (i =jew) < awy  GE (4)
i€l
MSC capacity constraint (BSC interface level)
S(wj =k z) <nfye, kK. (5)
JjeJ feL
MSC capacity constraint (switch fabric level)
D (wy = k) zeBe) < e, kekK. (6)
Jj€J el
Link capacity constraint
ti <o, 1€T (7
t; <> ziehe,  JEJ ®)
Lel
Traffic flow conservation constraint
tj = Z(Ui = .7) Z((UO # j)(gio + goi))
iel ol
+3 (v =) gip +gpi)),  JEJ ©)
iel
ti= (Gio+gip)+ Y Goi +gpi, i€L  (10)
o€l o€l
Domains of the variables
v,eJ(iel),wyeK(jeJ),z;€S(jeJ),
yw €T (ke K),zgeN(jeJLel). (11)

The cost function (1) of DPWCN, representing the total cost
of the network subsystem, is composed of the cost of the links
and interface cards and the cost of the BSCs and MSCs (includ-
ing the installation costs). Constraint (2) require that the total
nuntber of BTS to BSC links connected at site j € J be less
thdn or equal to the maximum number of BTS interfaces that
can be installed in the BSC type set up at that site. Constraint (3)
require that the total number of BSC to MSC links connected at
site 5 € J be less than or equal to the maximum number of
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MSC interfaces that can be installed in the BSC type set up at
that site and constraint (4) impose that the sum of the BTS rates
connected to the BSC type installed at site j € J be less than
or equal to its switch fabric capacity. Constraint (5) require that
the total number of BSC to MSC links connected to site k¥ € K
be less than or equal to the maximum number of BSC interfaces
that can be installed in the MSC type set up at that site and con-
straint (6) impose that the sum of the rates of the BSC to MSC
links connected to the MSC type installed at site & € K be
less than or equal to its switch fabric capacity. Constraints (7)
and (8) are respectively BTS to BSC and BSC to MSC link ca-
pacity constraints and constraints (9) and (10) are the traffic flow
conservation constraints.

III. THE HEURISTIC METHOD

In this section, we present a local search heuristic for DP-
WCN, denoted constraint programming local search (CPLS).
The main idea behind CPLS is to find a good subset of BSC
sites to use by quickly estimating the cost of such subsets.

A. The Initial Solution

Algorithm 1 initial solution algorithm

1: o« number of BSC sites used by the model

p « number of BTSs

q <« number of sites to permute

sort J in increasing order of sum of distances with p nearest
BTSs

5: J' « the first o sites from J

6: launch the probe on J’ to determine the cost
7. repeat
8
9

B 4

permute g sites of J’ with g sites not in .J/
: launch the probe on J' to determine the cost
10: until 7 some possible distinct permutation
11: return J’ of better cost

It begins by looking for an initial solution. The initial sub-
set is selected by considering the closest BSC site to the BTSs.
We order the BSC sites according to the sum of distarices with
the p nearest BTS (Algorithm 1). We choose the o BSC sites
for which p BTSs will be assigned with the lower cost. Then,
we replace ¢ BSC sites of this subset by ¢ others to evaluate
the impact of each BSC site. We keep the best subset as the
initial solution. The parameters used to search for the initial so-
lution were obtained by experimentation. Algorithm 1 mentions
launching a probe—we defer the discussion of this topic until
Section 1II-C.

B. The Local Search

Next, we perform a local search on the initial solution found,
trying to remove the BSC sites having the lowest number of BTS
assigned to them while keeping those with many BTS assigned
to them since this is good for the optimization of the cost of BTS
to BSC links. The local search procedure (Algorithm 2) begins
by ordering the BSC sites in the current solution according to
the number of BTS assigned to each one. After that, at each
iteration of the local search, we select the number of BSC sites,
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Algorithm 2 local search algorithm
0 «— number of BSC sites used by the model
J « set of possible BSC sites
n « number of BSC sites considered for removal
m « number of BSC sites considered for addition
repeat
sort .J in increasing order of the number of BTS assigned
J' « the first o sites from J '
J// — J _ Jl
fortinl - --ndo
10: remove the i-th site of J’
launch the probe to estimate the neighbor’s cost
12: for jinl.-.--mdo
13: replace the i-th site of J' by the j-th of J”
14: launch the probe to estimate the neighbor’s cost
15: end for
16:  end for
17:  compare the probes and keep the least expensive solution
18: until Az € N(x},) such that f(z) < f(xx)

R R o

—_
—_

denoted n, used in the current solution having the lowest number
of BTS assigned to them. To visit the neighborhood N () of
the current solution zj, at the iteration k, we evaluate the cost f
of solutions obtained by changing one of the n sites previously
identified (¢ € n) by another not used in the current solution as
well as the solution obtained by removing that site. The best
solution is selected as the current solution. The local search
continues while the cost of the current solution decreases.

C. Probing

Probing consists of estimating the cost of a solution that uses
only a given subset of BSC sites by an incomplete exploration
of the search space reporting the least expensive solution found
within a fixed computation time. In order to do this, we decom-
pose our CP model into two subproblems. The purpose of the
first subproblem is to assign the BTSs to the BSCs and to se-
lect the BSC types at each BSC site for a given subset of BSC
sites to use. The purpose of the second subproblem is to assign
the BSCs to the MSCs, to select the MSC types and the BSC to
MSC link types and to ensure traffic flow conservation. For a
given subset of the BSC sites, the subproblems are solved one
after the other using a constraint programming software (e.g.,
ILOG OPL Studio [15]). The purpose of this decomposition is
to ayoid propagation (domain reduction) through the traffic flow
conservation constraints during the assignment of v;’s. Such a
propagation would be too time consuming because of a double
summation in (9) that involves v;’s. Indeed, at each assignment
of a v; variable, (9) will be used to reduce the domain of t;. To
accomplish this task we would have to find the BTSs that are
assigned to the same BSC site by calculating the double sum-
mation. :

In the first subproblem, corresponding to the section between
BTS and BSC, the assignment heuristic first fixes each BTS to
a BSC site (v;) (Fig. 2). In the figures the “forall” keyword is
used to specify the order in which variables are assigned and
the “tryall” keyword is used to specify the order in which the
values are tried. The BTS variables are ordered by decreasing
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Strategy 1: BTS to BSC site assignment
forall (7 € I ordered by decreasing ;)
tryall ( € J ordered by increasing distance between ¢ and j)

Vi =]

Fig. 2. The strategy of the first subproblem.

Table 1. Features of the BTS types.

Type A Type B TypeC
Capacity (circuits) 96 288 576
Num. of BTS DS-1 interfaces 1 3 6

Table 2. Costs of the BSC types (including the installation costs).

Type A TypeB TypeC

Capacity (circuits) 5,000 10,000 15,000
Max. num. of BTS interfaces 15 30 60
Max. num. of MSC interfaces 15 30 60
Cost ($) 50,000 90,000 120,000

Table 3. Costs of the MSC types (including the installation costs).

Type A TypeB TypeC
Capacity (circuits) 100,000 200,000 300,000
Max. num. of BSC interfaces 50 100 150

Cost ($) 200,000 350,000 500,000

Table 4. Costs of the interface types (including the installation costs).

Interface type  Capacity (circuits) Cost ($)
DS-1 96 500
DS-3 2,688 2,500

number of links used, to assign first the BTS with more links
and reduce the total link cost. The values in the domain of each
BTS variable v; are ordered by increasing distance with each
BSC site. Hence, the BTSs are first assigned to the nearest BSC
site available. Next, we can determine the BSC type to install
at each site. Knowing the BTS assignment it is easy to install
the least cost BSC type at each site (x;). For each BSC site, we
compute the minimum cost equipment to install by adding the
demands of the BTSs assigned to the BSC site.

The second subproblem, the network between the BSCs and
the MSCs, has small instances, allowing us to evaluate each pos-
sibility. The solutions found for this section are optimal accord-
ing to the choices made in the first subproblem. The search pro-
cedure first determines the MSC type to install at each site (y)
considering the demand of each BSC (Strategy 2, Fig. 3). The
variables are assigned in simple lexicographic order because we
evaluate all the possibilities so we don’t need to begin with a par-
ticular variable. As mentioned before, by ordering the values by
increasing cost, the first solution obtained for this variable is the
least expensive one. Finally, we determine the number of links
between the BSC and MSC sites (z;;) (Strategy 3, Fig. 3). The
variables are ordered by increasing link cost and the values are
ordered by increasing number of links to install, consequently

Table 5. Costs of the BTS to BSC links (including the installation costs).

BSCtype Num. of DS-1 Capacity (circuits)  Cost($)
A 1 96 2,000
B 3 288 3,000
C 6 596 4,000

Table 6. Costs of the BSC to MSC links (including the installation

costs).
Link type  Capacity (circuits)  Cost ($/km)
DS-1 96 2,000
DS-3 2,688 4,000

Table 7. Initial heuristic parameters.

Il o p ¢
50 4 12 2
100 4 18 2
150 4 24 3
200 4 28 3

the first feasible solution found is the least expensive one. The
zj1 assignment will also fix the BSC assignment (w;): The BSC
site will be assigned to the MSC site where there are links be-
tween them.

IV. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed
heuristic. The heuristic was implemented in the ILOG OPL
script language [15] on a AMD Athlon PC (1.6 GHz and 512
MB of RAM). For the tests, three BTS types, three BSC types
and three MSC types are used. Their features are presented re-
spectively in Tables 1-3. Moreover, DS-1 links are used to con-
nect the BTSs to the BSCs and DS-1 and DS-3 links are used
to connect the BSCs to the MSCs. The interface costs are pre-
sented in Table 4 and the link costs in Tables 5 and 6. Table 7
presents the parameters used to find the initial solution.

For the tests, 28 instances were generated as follows. |I]
points corresponding to BTSs’ locations, |J| points correspond-
ing to the BSC sites and | K| points corresponding to the MSC
sites were generated in a 100 km by 100 km grid following a uni-
form distribution. The type of each BTS was selected randomly
among the three BTS types considered (Table 1). Finally, the de-
mand between each pair of BTSs and between the BTSs and the
public network was generated randomly in the interval [0,0.2]
Erlang, following a uniform distribution. All test results were
compared to the results obtained on the same instances with a
tabu search algorithm, denoted TS, proposed by Chamberland
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tryall (¢ € T ordered by increasing cost of an MSC of type t)

Strategy 3: Number of links of each type between the BSC and the MSC assignment

Fig. 3. The strategies of the second subproblem.

straint programming model has been proposed combined with a
local search heuristic.

As mentioned before, the purpose of the heuristic strategies
is to estimate quickly the cost of a subset of BSC sites. In Strat-
egy 1, it is possible that some reassignment reduces the cost of
the solution. This is explained by the fact that some BTSs could
not be assigned to the nearest BSC site because of the capacity
limit of a BSC. This possible reassignment provides the biggest
uncertainty of our estimation method. However, in a real net-
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Strategy 2: MSC type to MSC site assignment
forall (k € K)
Yk =1
forall (5 € J)
forall (¢ € L ordered by increasing cost of a link of type ¢)
tryall (n € 0---min{n,, ay, /op})
Zig=Tn
10,800,000
10,750,000 g
10,700,000 [
10,650,000 \
@ 10,600,000 Y
& 10550000 Y
10,500,000 N
10,450,000
10,400,000 . > ———%
10,350,000 ‘ 1 ,
0 10000 20000 30000 40000 50000

CPU time (sec)

Fig. 4. Typical evolution of the cost function (200 BTS, 30 BSC, 10 MSC).

and Pierre [6].

The results are presented in Table 8. In this table, columns 1
to 3 present respectively the number of BTSs, the number of
BSC sites and the number of MSC sites. Column 4 presents a
lower bound, denoted LB, obtained by solving a relaxed version
of the model which doesn’t consider the traffic flow conservation
constraints (see [6] for more detail concerning the lower bound).
Columns 5 and 6 present respectively the results obtained by the
TS algorithm and the corresponding CPU time. Columns 6 to 10
present the value of the solution found by algorithm CPLS, the
CPU time to find it and the GAP that indicates the percentage
of improvement of the solution value compared to the value of
LB and TS. These results show that CPLS confirm and improve,
on average, the solutions found by TS. Indeed, the average im-
provement is 0.17% and TS has found only eight better solutions
than CPLS. Moreover, the average percentage gap between the
solution values found by CPLS and the lower bound values is
5.13%.

As we can see in Table 8, the CPU time used by the CPLS
approach is higher than the one used by TS algorithm. In this
context of a problem at the strategic level, the quality of the so-
lution found is more important than the speed of the algorithm.
In any case, Fig. 5 illustrates that the initial solutions quickly
compare to the final solutions.

V. CONCLUSIONS

In this paper, we studied the tree-topology design problem for
wireless cellular networks that consists of selecting the location
of the network nodes (BSC and MSC) and their types, designing
the network tree-topology and selecting the link types. A con-

work, the BTS and the BSC sites are geographically distributed.
So, it is possible that some BSC site has a demand exceeding
their capacity but not in an excessive way. The BTSs that were
not assigned to the nearest BSC site will be assigned to the sec-
ond nearest one. The possible gain for a real network is small.
The other strategies find the optimal solution according to the
choices made by the first strategy. So the estimation is good for
a real network.

Experimental results show that the local search heuristic pro-
duces, on average, better solutions than the best previously
known algorithm for this problem. Since our local search ap-
proach is essentially a simple descent and therefore runs the risk
of getting trapped in a local minimum, improvements could pos-
sibly be achieved through standard mechanisms to escape such
minima [12], [16], [17]. A first attempt with a multi-start ap-
proach (multiple runs of the algorithm with a different initial
solution) improved fewer than 10% of the solutions and by only
0.5% on average, at the expense of a higher computational cost.
Similarly, preliminary experiments with variable neighborhood
search only improved some of the solutions and by less than 1%.
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