• Title/Summary/Keyword: The Configuration of the zone

Search Result 143, Processing Time 0.029 seconds

Grid Discretization Study for the Efficient Aerodynamic Analysis of the Very Light Aircraft (VLA) Configuration

  • Sitio, Moses;Kim, Sangho;Lee, Jaewoo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.122-132
    • /
    • 2013
  • In this research the development of unstructured grid discretization solution techniques is presented. The purpose is to describe such a conservative discretization scheme applied for experimental validation work. The objective of this paper is to better establish the effects of mesh generation techniques on velocity fields and particle deposition patterns to determine the optimal aerodynamic characteristics. In order to achieve the objective, the mesh surface discretization approaches used the VLA prototype manufacturing tolerance zone of the outer surface. There were 3 schemes for this discretization study implementation. They are solver validation, grid convergence study and surface tolerance study. A solver validation work was implemented for the simple 2D and 3D model to get the optimum solver for the VLA model. A grid convergence study was also conducted with a different growth factor and cell spacing, the amount of mesh can be controlled. With several amount of mesh we can get the converged amount of mesh compared to experimental data. The density around surface model can be calculated by controlling the number of element in every important and sensitive surface area of the model. The solver validation work result provided the optimum solver to employ in the VLA model analysis calculation. The convergence study approach result indicated that the aerodynamic trend characteristic was captured smooth enough compared with the experimental data. During the surface tolerance scheme, it could catch the aerodynamics data of the experiment data. The discretization studies made the validation work more efficient way to achieve the purpose of this paper.

2D numerical study of the mechanical behaviour of non-persistent jointed rock masses under uniaxial and biaxial compression tests

  • Vaziri, Mojtaba Rabiei;Tavakoli, Hossein;Bahaaddini, Mojtaba
    • Geomechanics and Engineering
    • /
    • v.28 no.2
    • /
    • pp.117-133
    • /
    • 2022
  • Determination of the mechanical behaviour of jointed rock masses has been a challenge for rock engineers for decades. This problem is more pronounced for non-persistent jointed rock masses due to complicated interaction of rock bridges on the overall behaviour. This paper aims to study the effect of a non-persistent joint set configuration on the mechanical behaviour of rock materials under both uniaxial and biaxial compression tests using a discrete element code. The numerical simulation of biaxial compressive strength of rock masses has been challenging in the past due to shortcomings of bonded particle models in reproducing the failure envelope of rock materials. This problem was resolved in this study by employing the flat-joint contact model. The validity of the numerical model was investigated through a comprehensive comparative study against physical uniaxial and biaxial compression experiments. Good agreement was found between numerical and experimental tests in terms of the recorded peak strength and the failure mode in both loading conditions. Studies on the effect of joint orientation on the failure mode showed that four zones of intact, transition to block rotation, block rotation and transition to intact failure occurs when the joint dip angle varies from 0° to 90°. It was found that the applied confining stress can significantly alter the range of these zones. It was observed that the minimum strength occurs at the joint dip angle of around 45 degrees under different confining stresses. It was also found that the joint orientation can alter the post peak behaviour and the lowest brittleness was observed at the block rotation zone.

Force-based seismic design of steel haunch retrofit for RC frames

  • Ahmad, Naveed
    • Earthquakes and Structures
    • /
    • v.20 no.2
    • /
    • pp.133-148
    • /
    • 2021
  • The paper presents a simplified force-based seismic design procedure for the preliminary design of steel haunch retrofitting for the seismic upgrade of deficient RC frames. The procedure involved constructing a site-specific seismic design spectrum for the site, which is transformed into seismic base shear coefficient demand, using an applicable response modification factor, that defines base shear force for seismic analysis of the structure. Recent experimental campaign; involving shake table testing of ten (10), and quasi-static cyclic testing of two (02), 1:3 reduced scale RC frame models, carried out for the seismic performance assessment of both deficient and retrofitted structures has provided the basis to calculate retrofit-specific response modification factor Rretrofitted. The haunch retrofitting technique enhanced the structural stiffness, strength, and ductility, hence, increased the structural response modification factor, which is mainly dependent on the applied retrofit scheme. An additional retrofit effectiveness factor (ΩR) is proposed for the deficient structure's response modification factor Rdeficient, representing the retrofit effectiveness (ΩR=Rretrofitted /Rdeficient), to calculate components' moment and shear demands for the retrofitted structure. The experimental campaign revealed that regardless of the deficient structures' characteristics, the ΩR factor remains fairly the unchanged, which is encouraging to generalize the design procedure. Haunch configuration is finalized that avoid brittle hinging of beam-column joints and ensure ductile beam yielding. Example case study for the seismic retrofit designs of RC frames are presented, which were validated through equivalent lateral load analysis using elastic model and response history analysis of finite-element based inelastic model, showing reasonable performance of the proposed design procedure. The proposed design has the advantage to provide a seismic zone-specific design solution, and also, to suggest if any additional measure is required to enhance the strength/deformability of beams and columns.

Automatic Exposure Control Performance Evaluation of Digital Radiographic Imaging System by Manufacturer Using Coins (동전을 이용한 제조사 별 디지털 방사선 영상 시스템의 자동노출제어 성능 평가)

  • Lim, Se-Hun;Seoung, Youl-Hun
    • Journal of radiological science and technology
    • /
    • v.45 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • In this study, we proposed an image quality control for an automatic exposure control (AEC) of digital radiographic imaging system and tried to analyze the performance of the AEC by various manufacturer. The subjects of the experiment were analyzed for the AEC image quality evaluation using digital radiation generators from four manufacturer such as PHILIPS, GE Healthcare, SAMSUNG Healthcare, DK Medical Solution. We used as materials for the implementation of the image quality evaluation by coins (500 won, KOMSCO, Korea). This study evaluated the performance evaluation of the AEC as image quality and exposure dose (Milliampere-seconds; mAs). The image quality evaluation was tried visual assessment by two radiologic technologists and contrast to noise (CNR) by ImageJ. The exposure dose investigated mAs on digital radiation generators. The radiographic coin images acquired 360 images based on change in the control factors of the AEC, which were kVp, the consistency of field configuration and dominant zone, sensitivity and density. As a result, there was a significant difference in the AEC performance between manufacturer. The CNR by the AEC for each manufacturer showed a difference of up to about 1.9 times. The exposed tube current by the AEC for each manufacturer showed a difference of up to about 5.8 times. It is expected that our proposed evaluation method using coins could be applied as the AEC performance evaluation method in the future.

Designing a Subsurface Drainage System: A Trade-Off Between Environmental Sustainability and Agricultural Productivity (유공암거 배수 구성: 환경지속가능성과 농업생산성 사이의 균형)

  • Kim, Kyung-Min;Jeong, Wu-Seong;Bhattarai, Rabin;Jeong, Han-Seok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.3
    • /
    • pp.53-61
    • /
    • 2022
  • This study evaluated the impacts of subsurface drainage design, i.e., spacing and depth, on agricultural productivity and environmental sustainability in two tile-drained fields (Sites A and E) under a corn-soybean rotation in the Midwestern United States. A calibrated and validated Root Zone Water Quality Model (RZWQM) was used to simulate Nitrate-N (nitrogen) losses to tile drainage and crop yields of 30 tile spacing and depth scenarios over 24 years (1992-2015). Our results presented that the narrower and deeper the tile drains are placed, the greater corn yield and Nitrate-N losses, indicating that the subsurface drainage design may cause a trade-off between agricultural productivity and environmental sustainability. The simulation results also presented that up to about 255.7% and 628.0% increase in Nitrate-N losses in Sites A and E, respectively, far outweigh the rate of increase in corn yield up to about 1.1% and 1.6% from the adjustment of tile spacing and depth. Meanwhile, the crop yield and Nitrate-N losses according to the tile configuration differed depending on the field, and the soybean yield presented inconsistent simulation results, unlike the corn yield, which together demonstrate the heterogeneous characteristic of agro-environmental systems to a subsurface drainage practice. This study demonstrates the applicability of agricultural systems models in exploring agro-environmental responses to subsurface drainage practices, which can help guide the introduction and installation of tile systems into farmlands, e.g., orchards and paddy fields, in our country.

A study on cleaning performance of particles on collection plates using an electrodynamic screen (전기역학적 스크린을 이용한 집진판 표면 위 입자 세정성능 연구)

  • Yunhui Joe;Dongho Shin;Younghun Kim;Inyong Park;Sang Bok Kim;Gunhee Lee;Bangwoo Han
    • Particle and aerosol research
    • /
    • v.19 no.3
    • /
    • pp.63-76
    • /
    • 2023
  • An electrostatic precipitator (ESP) has a low pressure drop and a high collection efficiency but its collection efficiency can be reduced due to dust accumulation on the collection plates during long-term operations. In order to maintain the initial dust collection efficiency, it is necessary to periodically clean the collection plates. The common cleaning methods are using physical impacts or water sprays. These cleaning methods can lead to damage to the collection plate or generate wastewater. Herein, we implemented an electrodynamic screen (EDS) for ESP cleaning and evaluated its surface cleaning performance of particles. The EDS is an electrostatic system that can electrostatically repel particles on surfaces, allowing it to clean the ESP without causing damage and wastewater generation. Our evaluation included the analysis of the effects of AC voltage characteristics, electrode configuration and environmental conditions on the cleaning performance of the EDS with the aim of achieving effective surface cleaning. It has been demonstrated that activating the EDS cleans up to 65% of the particles on the surface, which indicates about 94% of our target cleaning zone.

A study on modeling of boiling heat transfer in core debris bed of SFR

  • Venkateswarlu S.;Hemanth Rao E.;Prasad Reddy G.V.;Sanjay Kumar Das;Ponraju D.;Venkatraman B.
    • Nuclear Engineering and Technology
    • /
    • v.56 no.9
    • /
    • pp.3864-3871
    • /
    • 2024
  • In case of a hypothetical severe accident in a Sodium-cooled Fast Reactor (SFR), coolability of the debris bed in the post-accident phase plays a vital role in mitigating the accident and ensuring the structural integrity of the reactor vessel. Few numerical studies are reported in literature, in which the boiling heat transfer in debris bed is expressed as equivalent heat conduction using similarity law between heat conduction and two-phase heat transfer. However, these studies assumed steady state mass conservation for the boiling zone and neglected the gravity force. Hence, a detailed study has been carried out for various particle sizes and porosities of SFR debris to investigate the influence of above considerations. The effect of gravity on debris bed coolability is studied using steady state model of Lipinski, which showed that gravity has a non-negligible effect, for particle size of 0.3 mm and porosity of 0.5. However, the gravitation force was found to have a negligible effect in dryout heat flux estimation for the bottom cooled configuration. A transient numerical model is developed for simulating the boiling phenomena in debris beds and validated with the published experimental results. The assumption of steady state mass conservation is verified by carrying out transient analysis, which indicated early prediction of the dryout inception. For time dependent heat generation case, the unsteady mass conservation predicted higher DHF compared to constant heat generation.

A Study on Fluid Flow and Heat Transfer of a Corrugated Structure for Crossflow Reduction of Impingement Jet (충돌제트에서의 횡방향 유동 감소를 위한 파형 구조의 유동 및 열전달에 관한 연구)

  • Hwang, Byeong Jo;Kim, Seon Ho;Joo, Won Gu;Cho, Hyung Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.5
    • /
    • pp.329-339
    • /
    • 2017
  • Impingement jets have been applied in a wide variety of fields as they provide significantly high heat transfer on the impingement-jet stagnation zone. However, the crossflow in an impingement chamber developed by spent wall jets can disrupt and deflect the downstream jets in the array, leading to a decrease in the cooling performance of an array of impingement jets. A numerical analysis is made of the fluid flow and heat transfer characteristics in a corrugated structure that traps the spent air in the corrugations between impingement jets and reduces crossflow effects on downstream jets. All computations are performed by considering a three-dimensional, steady, and incompressible flow by using the ANSYS-CFX 15.0 code. The effects of the configuration parameters of the corrugated structure on crossflow reduction of the array of impingement jets are presented and discussed.

An Importance Analysis of Planning Factors for Constructing Environmental-Friendly Industrial Estate (환경친화적 산업단지 조성을 위한 계획요소의 중요도 분석)

  • Lee, Eun Yeob;Kim, Jung Kon;Lee, Hyun Ju
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.15 no.4
    • /
    • pp.1-11
    • /
    • 2012
  • This study prepared the list of planning components required for constructing environment-friendly industrial complex and grasped major environment-friendly planning components by measuring the importance per each planning component via the survey for specialists. As a result of measuring the importance of planning component according to each field for constructing environment-friendly industrial complex, it is indicated that important planning components in natural environment field are establishing complex location plan considering its configuration and slope, excluding projects for steep slope-land, establishing countermeasures for reducing contaminants per its source, and separated location of contamination industry around living space. In living environment field, proposed planning components having relatively high importance are separated location of pollution causing industry, establishing energy saving land use plan, linking with green way, circulation network plan, lowering noise level at roadside, plan for separating between pedestrian and vehicle, securing parking space, extending green park and proper location, installing green buffer zone, conserving and forming landscapes, land use for raising energy efficiency, and expansion of energy source. In case of ecological environment, core planning components such as conserving upper class of ecological naturality degree, conserving main habitat, and biotope forming plan are suggested. This study is limited to find out planning components for constructing environment-friendly physical environment of industrial complex which is a part of non-production process. The approach to solve environmental problem by linking spatially production process and non-production process. There is a need to conduct follow-up study to constructing technique for environment-friendly industrial complex considering production & nonproduction process afterward.

Implementation and Performance Analysis of Network Access Control Based on 802.1X for Effective Access Control on BYOD (효율적인 BYOD 접근통제를 위한 802.1X 네트워크 접근통제 구현과 성능 해석)

  • Lee, Min Choul;Kim, Jeongho
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.4 no.9
    • /
    • pp.271-282
    • /
    • 2015
  • In the business environment BYOD(Bring Your Own Device) is used and being expanded continuously. According to a survey conducted by Cisco in 2012 on 600 companies, 95% of them are already permitting the use of BYOD in their work environments so that productivity of their employees has improved as a result. Gartner predicted that the use of BYOD will be caused new security threat. They also suggested to introduce NAC(Network Access Control) to resolve this threat, to separate network zone based on importance of their business, to establish the policy to consider user authority and device type, and to enforce the policy. The purpose of this paper is to design and implement the NAC for granular access control based on IEEE(Institute of Electrical and Electronics Engineers) 802.1X and DHCP(Dynamic Host Configuration Protocol) fingerprinting, and to analyze the performance on BYOD environment.