Browse > Article
http://dx.doi.org/10.5389/KSAE.2022.64.3.053

Designing a Subsurface Drainage System: A Trade-Off Between Environmental Sustainability and Agricultural Productivity  

Kim, Kyung-Min (Department of Environmental Engineering, Seoul National University of Science and Technology)
Jeong, Wu-Seong (Department of Environmental Engineering, Seoul National University of Science and Technology)
Bhattarai, Rabin (Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign)
Jeong, Han-Seok (Department of Environmental Engineering, Seoul National University of Science and Technology)
Publication Information
Journal of The Korean Society of Agricultural Engineers / v.64, no.3, 2022 , pp. 53-61 More about this Journal
Abstract
This study evaluated the impacts of subsurface drainage design, i.e., spacing and depth, on agricultural productivity and environmental sustainability in two tile-drained fields (Sites A and E) under a corn-soybean rotation in the Midwestern United States. A calibrated and validated Root Zone Water Quality Model (RZWQM) was used to simulate Nitrate-N (nitrogen) losses to tile drainage and crop yields of 30 tile spacing and depth scenarios over 24 years (1992-2015). Our results presented that the narrower and deeper the tile drains are placed, the greater corn yield and Nitrate-N losses, indicating that the subsurface drainage design may cause a trade-off between agricultural productivity and environmental sustainability. The simulation results also presented that up to about 255.7% and 628.0% increase in Nitrate-N losses in Sites A and E, respectively, far outweigh the rate of increase in corn yield up to about 1.1% and 1.6% from the adjustment of tile spacing and depth. Meanwhile, the crop yield and Nitrate-N losses according to the tile configuration differed depending on the field, and the soybean yield presented inconsistent simulation results, unlike the corn yield, which together demonstrate the heterogeneous characteristic of agro-environmental systems to a subsurface drainage practice. This study demonstrates the applicability of agricultural systems models in exploring agro-environmental responses to subsurface drainage practices, which can help guide the introduction and installation of tile systems into farmlands, e.g., orchards and paddy fields, in our country.
Keywords
Agricultural productivity; environmental sustainability; RZWQM; subsurface drainage;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Chung, S. O., 1995. Analyses of subsurface drainage effects of farmland with respect to pipe and envelop materials. Journal of the Korean Society of Agricultural Engineers 37(5): 53-61. (in Korean).
2 Jung, K. Y., 2018a. Systems of Non-Excavated Culvert Draingage and Underground water-level control for the Cultivation Crops in Paddy Fileds. Agriculture technology 626: 12-13. (in Korean).
3 Alexander, R. B., A. S. Richard, G. E. Schwarz, E. W. Boyer, J. V. Nolan, and J. W. Brakebill, 2008. Differences in phosphorus and nitrogen delivery to the gulf of mexico from the mississippi river basin. Environmental Science & Technology 42(3): 822-830. doi:10.1021/es0716103.   DOI
4 Arenas Amado, A. A., K. E. Schilling, C. S. Jones, N. Thomas, and L. J. Weber, 2017. Estimation of tile drainage contribution to streamflow and nutrient loads at the watershed scale based on continuously monitored data. Environmental Monitoring Assessment 189: 426. doi:10.1007/s10661-017-6139-4.   DOI
5 Fang, Q., L. Ma, Q. Yu, L. R. Ahuja, R. W. Malone, and G. Hoogenboom, 2010. Irrigation strategies to improve the water use efficiency of wheat-maize double cropping systems in North China Plain. Agricultural Water Management 97(8): 1165-1174. doi:10.1016/J.AGWAT.2009.02.012.   DOI
6 Gillette, K., R. W. Malone, T. C. Kaspar, L. Ma, T. B. Parkin, D. B. Jaynes, Q. X. Fang, J. L. Hat field, G. W. Feyereisen, and K. C. Kersebaum, 2018. N loss to drain flow and N2O emissions from a corn-soybean rotation with winter rye. Science of The Total Environment 618: 982-997. doi:10.1016/J.SCITOTENV.2017.09.054.   DOI
7 Ghane, E., and M. H. Askar, 2021. Predicting the effect of drain depth on profitability and hydrology of subsurface drainage systems across the eastern USA. Agricultural Water Management 258: 107072. doi:10.1016/j.agwat.2021.107072.   DOI
8 Ghane, E., M. H. Askar, and R. W. Skaggs, 2021. Design drainage rates to optimize crop production for subsurface-drained fields. Agricultural Water Management 257: 107045. doi:10.1016/j.agwat.2021.107045.   DOI
9 Goolsby, D. A., W. A. Battaglin, B. T. Aulenbach, and R. P. Hooper, 2001. Nitrogen input to the Gulf of Mexico. Journal of Environmental Quality 30(2): 329-336. doi:10.2134/jeq2001.302329x.   DOI
10 Foley, J. A., N. Ramankutty, K. A. Brauman, E. S. Cassidy, J. S. Gerber, M. Johnston, N. D. Mueller, C. O'Connell, D. K. Ray, P. C. West, C. Balzer, E. M. Bennett, S. R. Carpenter, J. Hill, C. Monfreda, S. Polasky, J. Rockstrom, J. Sheehan, S. Siebert , D. Tilman, and D. P. M. Zaks, 2011. Solutions for a cultivated planet. Nature 478(7369): 337-342. doi:10.1038/nature10452.   DOI
11 Jeong, H., and R. Bhattarai, 2018. Exploring the effects of nitrogen fertilization management alternatives on nitrate loss and crop yields in tile-drained fields in Illinois. Journal of Environmental Management 213: 341-352. doi:10.1016/j.jenvman.2018.02.062.   DOI
12 Ma, L., L. R. Ahuja, J. C. Ascough, M. J. Shaffer, K. Rojas, R. W. Malone, and M. R. Cameira, 2001. Integrating system modeling with field research in agriculture: applications of the root zone water quality model (RZWQM). Advances in Agronomy 71: 233-292. doi:10.1016/S0065-2113(01)71016-4.   DOI
13 Jeong, H., C. M. Pittelkow, and R. Bhattarai, 2019. Simulated responses of tile-drained agricultural systems to recent changes in ambient atmospheric gradients. Agricultural Systems 168: 48-55. doi:10.1016/J.AGSY. 2018.10.005.   DOI
14 Kim, D. S., J. E. Yang, Y. S. Ok, and K. Y. Yoo, 2006. Effect of perforated pvc underdrainage pipe on desalting of plastic film house soils. Korean Journal of Soil Science and Fertilizer 36(2): 65-72. (in Korean).
15 Malone, R. W., B. T. Nolan, L. Ma, R. S. Kanwar, C. Pederson, and P. Heilman, 2014. Effects of tillage and application rate on atrazine transport to subsurface drainage: Evaluation of RZWQM using a six-year field study. Agricultural Water Management 132: 10-22. doi:10.1016/J.AGWAT.2013.09.009.   DOI
16 Goodland, R., 1995. The concept of environmental sustainability. Annual Review of Ecology and Systematics 26: 1-24.   DOI
17 Ma, L., G. Hoogenboom, L. R. Ahuja, J. C. Ascough, and S. A. Saseendran, 2006. Evaluation of the RZWQM-CERES-Maize hybrid model for maize production. Agricultural Systems 87(3): 274-295. doi:10.1016/j.agsy.2005.02.001.   DOI
18 Jones, C.A., J. R. Kiniry, and P. T. Dyke, 1986. CERES-Maize: A Simulation Model of Maize Growth and Development. Ph. D. diss., Texas, Ind: Texas A&M University.
19 Jung S. M., 2018b. Soil water management in poor drainage vineyards. Agriculture Technology 626: 8-9. (in Korean).
20 Kim, S. S., S. Y. Lee, G. H. Han, and I. S. Eo, 1997. Underdrainage effects on soil salinity and growth of rice in gyehwa reclaimed saline land. Journal of Crop Science and Biotechnology 42(1): 61-67. (in Korean).
21 Mitchell, J. K., G. F. McIsaac, S. E. Walker, and M. C. Hirschi, 2000. Nitrate in river and subsurface drainage flows from an east Central Illinois watershed. Transactions of the American Society of Agricultural Engineers 43: 337-342. doi:10.13031/2013.2709.   DOI
22 Mourtzinis, S., F. A. Jose, G. Patricio, I. Juan, E. Rattalino, K. Hans, N. Set h, A. N. Kelly, H. Mat t hew, and P. C. Shawn, 2021. Assessing benefits of artificial drainage on soybean yield in the North Central US region. Agricultural Water Environment 243: 106425. doi:10.1016/j.agwat.2020.106425.   DOI
23 Shin, J. S., J. G. Jeon, S. B. Lee, W. H. Kim, S. H. Yoon, J. K. Lee, J. G. Kim, M. W. Jung, S. Sung, and Y. C. Lim, 2008. Effect of drainage culvert spacing on forage crops production in poorly drained paddy field converted to upland crop cultivation. Journal of the Korean Society of Grassland and Forage Science 28(4): 301-306. (in Korean).   DOI
24 Skaggs, R. W., M. A. Youssef, G. M. Chescheir, and J. W. Gilliam, 2005. Effect of drainage intensity on nitrogen losses from drained lands. Transactions of the American Society of Agricultural Engineers 48(6): 2169-2177. doi:10.13031/2013.20103.   DOI
25 Nangia, V., P. H. Gowda, D. J. Mulla, and G. R. Sands, 2010. Modeling impacts of tile drain spacing and depth on nitrate-nitrogen losses. Vadose Zone Journal 9(1): 61-72. doi:10.2136/VZJ2008.0158.   DOI
26 Singh, S., L. Negm, H. Jeong, R. Cooke, and R. Bhattarai, 2022. Comparison of simulated nitrogen management strategies using DRAINMOD-DSSAT and RZWQM2. Agricultural Water Management 266: 107597. doi:10.1016/J.AGWAT.2022.107597.   DOI
27 USDA-ARS. 1992. Root Zone Water Quality Model version 1.0. User's Manual. GPSR Technical Report No. 3. Ft. Collins. Colo.: USDA-ARS, Great Plains Systems Research Unit.
28 Shuttleworth, W. J., and J. S. Wallace, 1985. Evaporation from sparse crops-an energy combination theory. Quarterly Journal of The Royal Meteorological Society 111: 839-855. doi:10.1002/qj.49711146910.   DOI
29 Skaggs, R. W., 1978. A water management model for shallow water table soils. Report (Water Resources Research Institute of the University of North Carolina) 134. Water Resources Research Institute of the University of North Carolina.
30 Vitousek, P. M., R. Naylor, T. Crews, M. B. David, L. E. Drinkwater, E. Holland, P. J. Johnes, J. Katzenberger, L. A. Martinelli, P. A. Matson, G. Nziguheba, D. Ojima, C. A. Palm, G. P. Robertson, P. A. Sanchez, A. R. Townsend, and F. S. Zhang, 2009. Nut rient imbalances in agricultural development. Science 324(5934): 1519-1520. doi:10.1126/science.1170261.   DOI
31 Ahuja, L. R., K. W. Rojas, J. D. Hanson, M. J. Shaffer, and L. Ma, 2000. Root Zone Water Quality Model: Modelling Management Effects on Water Quality and Crop Production. Colorado: Water Resources Publication.
32 Boote, K. J., J. W. Jones, G. Hoogenboom, and N. B. Pickering, 1998. The CROPGRO model for grain legumes. Understanding Options for Agricultural Production: 99-128. doi:10.1007/978-94-017-3624-4_6.   DOI