• Title/Summary/Keyword: The 6th national mathematics curriculum

Search Result 69, Processing Time 0.023 seconds

Error Analysis of 6th Grade Elementary Students in Problem Solving in the Measurement Domain (측정 영역의 문제해결 과정에서 나타나는 초등학교 6학년 학생의 오류 분석)

  • Kim, Seong-Kyeong
    • Journal of Science Education
    • /
    • v.41 no.3
    • /
    • pp.480-498
    • /
    • 2017
  • This study analyzed the errors of 6th graders of elementary school in problem solving process of the measurement domain. By analyzing the errors that students make in solving difficult problems, this study tried to draw implications for teaching and learning that can help students reach their achievement standards. First, though the students were given enough time to deal with problems, the fact that about 30~60% of students, based upon the problems given, can't solve them show that they are struggling with a part of measurement domain. Second, it was confirmed that students' understanding of the unit of measurement, such as relationship between units, was low. Third, the students have a low understanding in terms of the fact that once the base is set in a triangle then the height can be set accordingly and from which multiple expressions, in obtaining the area of the triangle, can be driven.

A Study on the Understanding of the Base Area of Solid Figures in the Elementary Mathematics (초등수학에서 입체도형의 밑넓이 이해에 대한 연구)

  • Kim, Sung Joon
    • Journal of the Korean School Mathematics Society
    • /
    • v.17 no.2
    • /
    • pp.167-191
    • /
    • 2014
  • In this study, we investigate the term-sets of 'base' or 'bottom': 'the bottom side of a polygon' and 'the base side (of a geometrical figure)'. And we study the concept of 'the base area' in the solid figures and the formula of 'the bottom dimensions'. We start from the 6th grade math problem: 'Find the bottom dimension of the rectangular.' The primary answer is that it does not use the term('the bottom dimensions') in the elementary mathematics. However, in the middle school mathematics, 'the base area' is used as means of 'the area of one bottom side', which is not explained anywhere from the elementary mathematics to middle school mathematics. In addition, the base is defined and 'the surface area' and 'the side area' is taught in the elementary mathematics, so we naturally think of 'the base area'. Therefore we first investigate the term-sets of 'base' or 'bottom' which has two elements: 'the bottom side of a polygon' and 'the base side (of a geometrical figure)'. Next we discuss 'the base area' through curriculum and textbooks, dictionary definitions and so on. In addition, we survey pre-service teachers and teachers about the solid figures and analyse the understanding of 'the base side' and 'the base area' comparatively. In particular, we compare the changes and the tendency of correct answers from the first question to the last question. As a result, we verify 'the cognitive gap' between the elementary mathematics and the middle school mathematics, we suggest the teaching of 'the base area' and succession subjects to teach figure domain in the elementary mathematics.

  • PDF

Mathematical Thinking of Sixth-Grade Gifted.Normal Class Students in the Equal Division Process of Line Segments (선분의 등분할 작도에 나타나는 6학년 영재.일반 학급 학생들의 수학적 사고)

  • Yim, Young-Bin;Ryu, Heui-Su
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.15 no.2
    • /
    • pp.247-282
    • /
    • 2011
  • In the elementary school mathematics textbooks of the 7th national curriculum, just simple construction education is provided by having students draw a circle and triangle with compasses and drawing vertical and parallel lines with a set square. The purpose of this study was to examine the mathematical thinking of sixth-grade elementary school students in the construction process in a bid to give some suggestions on elementary construction guidance. As a result of teaching the sixth graders in gifted and nongifted classes about the equal division of line segments and evaluating their mathematical thinking, the following conclusion was reached, and there are some suggestions about that education: First, the sixth graders in the gifted classes were excellent enough to do mathematical thinking such as analogical thinking, deductive thinking, developmental thinking, generalizing thinking and symbolizing thinking when they learned to divide line segments equally and were given proper advice from their teacher. Second, the students who solved the problems without any advice or hint from the teacher didn't necessarily do lots of mathematical thinking. Third, tough construction such as the equal division of line segments was elusive for the students in the nongifted class, but it's possible for them to learn how to draw a perpendicular at midpoint, quadrangle or rhombus and extend a line by using compasses, which are more enriched construction that what's required by the current curriculum. Fourth, the students in the gifted and nongifted classes schematized the problems and symbolized the components and problem-solving process of the problems when they received process of the proble. Since they the urally got to use signs to explain their construction process, construction education could provide a good opportunity for sixth-grade students to make use of signs.

  • PDF

A Survey on the Proportional Reasoning Ability of Fifth, Sixth, and Seventh Graders (5, 6, 7학년 학생들의 비례추론 능력 실태 조사)

  • Ahn, Suk-Hyun;Pang, Jeong-Suk
    • Journal of Educational Research in Mathematics
    • /
    • v.18 no.1
    • /
    • pp.103-121
    • /
    • 2008
  • The primary purpose of this study was to gather knowledge about $5^{th},\;6^{th},\;and\;7^{th}$ graders' proportional reasoning ability by investigating their reactions and use of strategies when encounting proportional or nonproportional problems, and then to raise issues concerning instructional methods related to proportion. A descriptive study through pencil-and-paper tests was conducted. The tests consisted of 12 questions, which included 8 proportional questions and 4 nonproportional questions. The following conclusions were drawn from the results obtained in this study. First, for a deeper understanding of the ratio, textbooks should treat numerical comparison problems and qualitative prediction and comparison problems together with missing-value problems. Second, when solving missing-value problems, students correctly answered direct-proportion questions but failed to correctly answer inverse-proportion questions. This result highlights the need for a more intensive curriculum to handle inverse-proportion. In particular, students need to experience inverse-relationships more often. Third, qualitative reasoning tends to be a more general norm than quantitative reasoning. Moreover, the former could be the cornerstone of proportional reasoning, and for this reason, qualitative reasoning should be emphasized before proportional reasoning. Forth, when dealing with nonproportional problems about 34% of students made proportional errors because they focused on numerical structure instead of comprehending the overall relationship. In order to overcome such errors, qualitative reasoning should be emphasized. Before solving proportional problems, students must be enriched by experiences that include dealing with direct and inverse proportion problems as well as nonproportional situational problems. This will result in the ability to accurately recognize a proportional situation.

  • PDF

Pedagogical Significance and Students' Informal Knowledge of Sample and Sampling (표본 개념의 교육적 의의와 인식 특성 연구)

  • Lee Kyung Hwa;Ji Eun Jeung
    • Journal of Educational Research in Mathematics
    • /
    • v.15 no.2
    • /
    • pp.177-196
    • /
    • 2005
  • In the Korean curriculum, students learn the concept of sample, sampling and other concepts related to sample and sampling, when they have reached the 10th grade of high school. But before the 10th grade, they have an activity about data collection, data analysis and the formulation of conclusion. We then investigated and analyzed the informal knowledge of students before they receive formal instructions. The results enabled the identification of the maximum response rate for each question that each student agreed or disagreed with. In particular, it didn't agree with how students consider the characteristic of population in the process of sampling, and the students agreed on a sampling process without considering the characteristic of the population or the components that consist the population. It showed that 5th grade students didn't investigate the data connected with sampling, and didn't understand the validity of sample survey process. While, 6th grade students equally understood sample size, sampling process, the reliance of data acquired through sample survey that applied to the source of judgment. But in details, it revealed that student had a misconception, or stayed at a subjective judgment level. The significant point is that many high school students didn't adequately understood a sample size with sampling. Though statistics instruction has traditionally been delayed until upper secondary education, this inquiry convinced us that this delay is unnecessary.

  • PDF

A Didactical Analysis of Korean Mathematical Terms Bi-yul and Bi-ui-gap (비의 값과 비율 용어에 대한 교수학적 분석)

  • Yim, Jaehoon
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.19 no.3
    • /
    • pp.371-386
    • /
    • 2015
  • There has been little consensus on how to define and use the Korean mathematical terms, bi-ui-gap and bi-yul. This study compares four perspectives of bi-ui-gap and bi-yul proposed and discussed in Korean mathematics education community and examines the ways of using the terms adopted since the 6th national curriculum. Based on the analysis that previously proposed perspectives conflict each other, this study proposes as a way to synthesize different perspectives of bi-ui-gap and bi-yul by analyzing the terms in the internal and external ratio contexts. This study proposes that bi-ui-gap be used to represent 'a value of $A{\div}B$' rather than 'a value originated from a ratio A:B' or 'a fraction form ${\frac{B}{A}}$.' This study also proposes that bi-yul or bae-yul be used in the internal ratio context and a new term, such as dan-wi-yul, be created for the external ratio context.

An Analysis on the Responses and the Behavioral Characteristics between Mathematically Promising Students and Normal Students in Solving Open-ended Mathematical Problems (수학 영재교육 대상 학생과 일반 학생의 개방형 문제해결 전략 및 행동 특성 분석)

  • Kim, Eun-Hye;Park, Man-Goo
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.15 no.1
    • /
    • pp.19-38
    • /
    • 2011
  • The purpose of this study was to analyze the responses and the behavioral characteristics between mathematically promising students and normal students in solving open-ended problems. For this study, 55 mathematically promising students were selected from the Science Education Institute for the Gifted at Seoul National University of Education as well as 100 normal students from three 6th grade classes of a regular elementary school. The students were given 50 minutes to complete a written test consisting of five open-ended problems. A post-test interview was also conducted and added to the results of the written test. The conclusions of this study were summarized as follows: First, analysis and grouping problems are the most suitable in an open-ended problem study to stimulate the creativity of mathematically promising students. Second, open-ended problems are helpful for mathematically promising students' generative learning. The mathematically promising students had a tendency to find a variety of creative methods when solving open-ended problems. Third, mathematically promising students need to improve their ability to make-up new conditions and change the conditions to solve the problems. Fourth, various topics and subjects can be integrated into the classes for mathematically promising students. Fifth, the quality of students' former education and its effect on their ability to solve open-ended problems must be taken into consideration. Finally, a creative thinking class can be introduce to the general class. A number of normal students had creativity score similar to those of the mathematically promising students, suggesting that the introduction of a more challenging mathematics curriculum similar to that of the mathematically promising students into the general curriculum may be needed and possible.

  • PDF

Mathematical Creativity in the View of General Creativity Theory (창의성 이론을 통해 본 수학 창의성)

  • Kim, Pan-Soo
    • Journal of Gifted/Talented Education
    • /
    • v.18 no.3
    • /
    • pp.465-496
    • /
    • 2008
  • With leadership and speciality, creativity is cutting a fine figure among major values of human resource in 21C knowledge-based society. In the 7th school curriculum much emphasis is put on the importance of creativity by pursuing the image of human being based on creativity based on basic capabilities'. Also creativity is one of major factors of giftedness, and developing one's creativity is the core of the program for gifted education. Doing mathematics requires high order thinking and knowledgeable understandings. Thus mathematical creativity is used as a measure to test one's flexibility, and therefore it is the basic tool for creativity study. But theoretical study for mathematical creativity is not common. In this paper, we discuss mathematical creativity applied to 6 approaches suggested by Sternberg and Lubart in educational theory. That is, mystical approaches, pragmatical approaches, psycho-dynamic approaches, cognitive approaches, psychometric approaches and scio-personal approaches. This study expects to give useful tips for understanding mathematical creativity and understanding recent research results by reviewing various aspects of mathematical creativity.

The Effects of 4D-Frame Teaching upon Mathematically Gifted Elementary Students' Mathematical Creativity and Spatial Sense (4D 프레임 활용 학습이 초등 수학영재학생의 공간감각 및 수학적 창의성에 미치는 영향)

  • Lee, Ju Yong;Choi, Jae Ho
    • Education of Primary School Mathematics
    • /
    • v.16 no.1
    • /
    • pp.1-20
    • /
    • 2013
  • The aim of this study was to develop a gifted educational program in math-gifted class in elementary school using recently developed 4D-frame. This study identified how this program impacted on spatial sense and mathematical creativity for mathematically gifted students. The investigation attempted to contribute to the developments for the gifted educational program. To achieve the aim, the study analysed the 5 and 6th graders' figure learning contents from a revised version of the 2007 national curriculum. According to this analysis, twelve learning sections were developed on the basis of 4D-frame in the math-gifted educational program. The results of the study is as follows. First, a learning program using 4D-frame for spatial sense from mathematically gifted elementary school students was statistically significant. A sub-factor of spatial visualization called mental rotation and sub-factors of spatial orientations such as sense of distance and sense of spatial perception were statistically significant. Second, the learning program that uses 4D-frame for mathematical creativity was statistically significant. The sub-factors of mathematical creativity such as fluency, flexibility and originality were all statistically significant. Third, the manipulation properties of 4D-frame helped to understand the characteristics of various solid figures. Through the math discussions in the class, participants' error correction was promoted. The advantage of 4D-frame including easier manipulation helped participants' originality for their own sculpture. In summary, this found that the learning program using 4D-frame attributed to improve the spatial sense and mathematical creativity for mathematically gifted students in elementary school. These results indicated that the writers' learning program will help to develop the programs for the gifted education program in the future.