• 제목/요약/키워드: Tg2576 mice

검색결과 8건 처리시간 0.02초

알츠하이머질환 모델동물인 Tg2576마우스의 행동, Aβ-42 침적, 신경성장인자 대사에 미치는 reserpine의 영향 (Effect of Reserpine on the Behavioral Defects, Aβ-42 Deposition and NGF Metabolism in Tg2576 Transgenic Mouse Model for Alzheimer's Disease)

  • 고준;최선일;김지은;이영주;곽문화;고은경;송성화;성지은;황대연
    • 생명과학회지
    • /
    • 제23권6호
    • /
    • pp.812-824
    • /
    • 2013
  • Reserpine은 항고혈압제로서 알츠하이머질병의 증상을 나타내는 Caenorhabditis elegans에서 세포독성을 감소시켜 마비를 억제하고 수명을 연장시키는 것으로 알려져 있다. 본 연구에서는 이러한 reserpine의 효능을 포유동물에서 확인하기 위하여, 알츠하이머질병의 병리적 특성과 연관된 주요인자의 변화를 30일 동안 reserpine을 투여한 Tg2576 마우스에서 관찰하였다. 그 결과, 공격행동(aggressive behavior)은 vehicle 투여 그룹에 비하여 reserpine 투여 그룹에서 유의적으로 감소하였으나 사회적 접촉(social contact)은 유의적인 변화가 없었다. 뇌의 해마부분에서 알츠하이머질병의 원인 중 하나인 $A{\beta}$-42의 축적은 reserpine 투여 그룹에서 유의적으로 감소하였고, $A{\beta}$-42의 농도도 대조군에 비하여 reserpine 투여 그룹에서 감소하였다. 더불어, ${\gamma}$-secretase의 구성단백질 중에서 PS-2, Pen-2, APH-1의 발현은 대조군에 비하여 reserpine 투여군에서 유의적으로 감소하였으나 NCT 발현은 변화가 없었다. 혈청에서 NGF의 농도는 Tg2576 마우스에서 감소하였다가 reserpine 투여한 그룹에서 유의적으로 증가하였으며, high affinity receptor의 신호전달과정에 포함된 단백질 중에서 reserpine 투여 그룹은 TrkA의 인산화가 증가하고 ERK 인산화는 감소되었다. 한편 low affinity receptor의 신호전달과정에서, $p75^{NTR}$과 Bcl-2의 발현은 vehicle 그룹에 비하여 reserpine 투여 그룹에서 유의적으로 발현이 증가하였으나 RhoA의 발현은 reserpine 투여 그룹에서 감소하였다. 따라서 이러한 결과는 reserpine은 포유동물 치매모델인 Tg2576 마우스에서 행동학적 변화, $A{\beta}$-42의 축적, NGF의 농도, NGF신호전달의 변화 등을 유도하며, 향후 치매치료제로서 가능성을 제시하고 있다.

Amyloid Precursor Protein Binding Protein-1 Is Up-regulated in Brains of Tg2576 Mice

  • Yang, Hyun-Jung;Joo, Yu-Young;Hong, Bo-Hyun;Ha, Sung-Ji;Woo, Ran-Sook;Lee, Sang-Hyung;Suh, Yoo-Hun;Kim, Hye-Sun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제14권4호
    • /
    • pp.229-233
    • /
    • 2010
  • Amyloid precursor protein binding protein-1 (APP-BP1) binds to the carboxyl terminus of amyloid precursor protein and serves as a bipartite activation enzyme for the ubiquitin-like protein, NEDD8. Previously, it has been reported that APP-BP1 rescues the cell cycle S-M checkpoint defect in Ts41 hamster cells, that this rescue is dependent on the interaction of APP-BP1 with hUba3. The exogenous expression of APP-BP1 in neurons has been reported to cause DNA synthesis and apoptosis via a signaling pathway that is dependent on APP-BP1 binding to APP. These results suggest that APP-BP1 overexpression contributes to neurodegeneration. In the present study, we explored whether APP-BP1 expression was altered in the brains of Tg2576 mice, which is an animal model of Alzheimer's disease. APP-BP1 was found to be up-regulated in the hippocampus and cortex of 12 month-old Tg2576 mice compared to age-matched wild-type mice. In addition, APP-BP1 knockdown by siRNA treatment reduced cullin-1 neddylation in fetal neural stem cells, suggesting that APP-BP1 plays a role in cell cycle progression in the cells. Collectively, these results suggest that increased expression of APP-BP1, which has a role in cell cycle progression in neuronal cells, contributes to the pathogenesis of Alzheimer's disease.

알츠하이머질병 모델동물인 Tg2576 마우스를 이용한 미나리 알코올추출물의 기억력 개선 효능 (Effect of Dropwort (Oenanthe javanica) Extracts on Memory Improvement in Alzheimer's Disease Animal Model, Tg2576 mice)

  • 원범영;신기영;하현지;장근아;윤여상;김예리;박용진;이형근
    • 한국식품과학회지
    • /
    • 제47권6호
    • /
    • pp.779-784
    • /
    • 2015
  • 본 연구는 천연 식물이 기억력 개선에 미치는 영향을 검토하기 위하여 총 7가지 식물에 대하여 아세틸콜린분해효소 활성 억제력을 측정하였다. 특히 미나리 알코올추출물(18.76%)의 억제력이 가장 우수하였으며, 미나리 알코올추출물에 대한 추가 연구를 수행하였다. Tg2576 마우스의 기억력에 미치는 영향을 검토하기 위하여 미나리 알코올추출물 50 mg/kg으로 3개월간 경구투여 후 수동회피테스트로 인지기능변화를 측정하였고, 뇌 속의 아세틸콜린분해효소 활성 억제, 베타아밀로이드1-42 단백질 생성 억제력을 측정하였다. 그 결과, 수동회피 테스트에서 미나리추출물을 투여한 Tg 마우스군은 181.77초로 생리식염수를 투여한 Tg 마우스군과 비교하여 머무름 시간이 유의적으로 증가하게 나타났다. 베타아밀로이드1-42 단백질 농도 측정 시 미나리 알코올추출물에 의하여 축적 농도가 985.19 pmol/g으로 감소하였으며, 생리식염수를 투여한 Tg 마우스군과 유의적 차이가 있었다. 추가적인 효소 억제력 실험 결과, 미나리 알코올추출물의 아세틸콜린분해효소 활성억제에 대한 50% 활성억제농도($IC_{50}$)값은 $991.77{\mu}g/mL$로 나타났으며, Lineweaver-Burk Plot 결과, 무경쟁적 저해로 나타났다. 따라서 미나리 알코올추출물은 Tg2576 형질전환 마우스의 인지기능을 개선시키며, 콜린성 신경시스템을 보호하는 물질로 판단된다. 미나리 알코올추출물은 기억 및 학습 증진에 효과적으로 작용하는 천연식물로써 이상의 결과를 근거로 한 미나리 소재의 다양한 기능성제품 개발과 부가가치 향상이 가능할 것으로 판단된다.

A Comparison between Extract Products of Magnolia officinalis on Memory Impairment and Amyloidogenesis in a Transgenic Mouse Model of Alzheimer's Disease

  • Lee, Young-Jung;Choi, Dong-Young;Han, Sang-Bae;Kim, Young-Hee;Kim, Ki-Ho;Seong, Yeon-Hee;Oh, Ki-Wan;Hong, Jin-Tae
    • Biomolecules & Therapeutics
    • /
    • 제20권3호
    • /
    • pp.332-339
    • /
    • 2012
  • The components of Magnolia officinalis have well known to act anti-inflammatory, anti-oxidative and neuroprotective activities. These efficacies have been sold many products as nutritional supplement extracted from bark of Magnolia officinalis. Thus, to assess and compare neuroprotective effect in the nutritional supplement (Magnolia $Extract^{TM}$, Health Freedom Nutrition LLC, USA) and our ethanol extract of Magnolia officinalis (BioLand LTD, Korea), we investigated memorial improving and anti-Alzheimer's disease effects of extract products of Magnolia officinalis in a transgenic AD mice model. Oral pretreatment of two extract products of Magnolia officinalis (10 mg/kg/day in 0.05% ethanol) into drinking water for 3 months ameliorated memorial dysfunction and prevented $A{\beta}$ accumulation in the brain of Tg2576 mice. In addition, extract products of Magnolia officinalis also decreased expression of ${\beta}$-site APP cleaving enzyme 1 (BACE1), amyloid precursor protein (APP) and its product, C99. Although both two extract products of Magnolia officinalis could show preventive effect of memorial dysfunction and $A{\beta}$ accumulation, our ethanol extract of Magnolia officinalis (BioLand LTD, Korea) could be more effective than Magnolia $Extract^{TM}$ (Health Freedom Nutrition LLC, USA). Therefore, our results showed that extract products of Magnolia officinalis were effective for prevention and treatment of AD through memorial improving and anti-amyloidogenic effects via down-regulating ${\beta}$-secretase activity, and neuroprotective efficacy of Magnolia extracts could be differed by cultivating area and manufacturing methods.

Altered free amino acid levels in brain cortex tissues of mice with Alzheimer's disease as their N(O,S)-ethoxycarbonyl/tert-butyldimethylsilyl derivatives

  • Paik, Man-Jeong;Cho, In-Seon;Mook-Jung, In-Hee;Lee, Gwang;Kim, Kyoung-Rae
    • BMB Reports
    • /
    • 제41권1호
    • /
    • pp.23-28
    • /
    • 2008
  • The altered amino acid (AA) levels as neurotransmitter closely correlate to neurodegenerative conditions including Alzheimer's disease (AD). Target profiling analysis of nineteen AAs in brain cortex samples from three Tg2576 mice as AD model and three littermate mice as control model was achieved as their N(O,S)-ethoxycarbonyl/tert-butyldimethylsilyl derivatives by gas chromatography. Subsequently, star pattern recognition analysis was performed on the brain AA levels of AD mice after normalization to the corresponding control median values. As compared to control mice, $\gamma$-aminobutyric acid among ten AAs found in brain samples was significantly reduced (P < 0.01) while leucine was significantly elevated (P < 0.02) in AD mice. The normalized AA levels of the three AD mice were transformed into distorted star patterns which was different from the decagonal shape of control median. The present method allowed visual discrimination of the three AD mice from the controls based on the ten normalized AA levels.

A Comparative Study of [F-18] Florbetaben (FBB) PET Imaging, Pathology, and Cognition between Normal and Alzheimer Transgenic Mice

  • Thapa, Ngeemasara;Jeong, Young-Jin;Kang, Hyeon;Choi, Go-Eun;Yoon, Hyun-Jin;Kang, Do-Young
    • 대한의생명과학회지
    • /
    • 제25권1호
    • /
    • pp.7-14
    • /
    • 2019
  • Alzheimer's disease (AD) is highly prevalent in dementia, with no specifically effective treatment having yet been discovered. Amyloid plaques are one of the key hallmarks of AD. Transgenic mouse models exhibiting Alzheimer's disease-like pathology have been widely used to study the pathophysiology of Alzheimer's disease. In this study, we showed an age-dependent correlation between cognitive function, pathological findings, and [F-18] Florbetaben (FBB) PET images. Nineteen transgenic mice (12 with AD, 7 with controls) were used for this study. We observed an increase in ${\beta}$-Amyloid deposition ($A{\beta}$) in brain tissue and [F-18] FBB amyloid PET imaging in the AD group. The [F-18] FBB data showed a mildly negative trend with cognitive function. Pathological findings were negatively correlated with cognitive functions. These finding suggests that amyloid beta deposition can be well-monitored with [F-18] FBB PET and a decline in cognitive function is related to the increase in amyloid plaque burden.

Effect of Lactobacillus dominance modified by Korean Red Ginseng on the improvement of Alzheimer's disease in mice

  • Lee, Mijung;Lee, So-Hee;Kim, Min-Soo;Ahn, Kwang-Sung;Kim, Manho
    • Journal of Ginseng Research
    • /
    • 제46권3호
    • /
    • pp.464-472
    • /
    • 2022
  • Background: Gut microbiota influence the central nervous system through gut-brain-axis. They also affect the neurological disorders. Gut microbiota differs in patients with Alzheimer's disease (AD), as a potential factor that leads to progression of AD. Oral intake of Korean Red Ginseng (KRG) improves the cognitive functions. Therefore, it can be proposed that KRG affect the microbiota on the gut-brain-axis to the brain. Methods: Tg2576 were used for the experimental model of AD. They were divided into four groups: wild type (n = 6), AD mice (n = 6), AD mice with 30 mg/kg/day (n = 6) or 100 mg/kg/day (n = 6) of KRG. Following two weeks, changes in gut microbiota were analyzed by Illumina HiSeq4000 platform 16S gene sequencing. Microglial activation were evaluated by quantitative Western blot analyses of Iba-1 protein. Claudin-5, occludin, laminin and CD13 assay were conducted for Blood-brain barrier (BBB) integrity. Amyloid beta (Aβ) accumulation demonstrated through Aβ 42/40 ratio was accessed by ELISA, and cognition were monitored by Novel object location test. Results: KRG improved the cognitive behavior of mice (30 mg/kg/day p < 0.05; 100 mg/kg/day p < 0.01), and decreased Aβ 42/40 ratio (p < 0.01) indicating reduced Aβ accumulation. Increased Iba-1 (p < 0.001) for reduced microglial activation, and upregulation of Claudin-5 (p < 0.05) for decreased BBB permeability were shown. In particular, diversity of gut microbiota was altered (30 mg/kg/day q-value<0.05), showing increased population of Lactobacillus species. (30 mg/kg/day 411%; 100 mg/kg/day 1040%). Conclusions: KRG administration showed the Lactobacillus dominance in the gut microbiota. Improvement of AD pathology by KRG can be medicated through gut-brain axis in mice model of AD.

ACM의 알츠하이머 생쥐 모델의 행동과 생체인자에 미치는 영향 (Effects of Added Chongmyung-tang on Behavior and Molecular Factors in the Alzheimer's Disease Model)

  • 김국기;최우창;김승형;남궁욱;박양춘;강위창;이상룡;정인철
    • 동의생리병리학회지
    • /
    • 제29권1호
    • /
    • pp.39-45
    • /
    • 2015
  • This experiment was designed to investigate the effect of Added Chongmyung-tang (ACM) on Alzheimer's disease mouse model. Effects of ACM on learning behavior were investigated using the Morris water maze method. Expression levels of molecular factors related to Alzheimer's disease such as glial fibrillary acidic protein (GFAP), cluster of differentiation antigen 68 (CD68), and tau protein in the hippocampus of APP-SWE Tg2576 mice were analyzed by immunofluorescence staining method. ACM reduced escape latency in the Morris water maze test. ACM decreased the expression level of GFAP and tau protein in the hippocampus. These results suggest that ACM may be involved in regulating molecules that are known to play an important role in the pathogenesis of Alzheimer's disease.