• 제목/요약/키워드: Texture Image segmentation

검색결과 144건 처리시간 0.026초

칼라 영상 객체 분할을 이용한 게임 콘텐츠 분류 서비스 방안에 관한 연구 (A Study on Game Contents Classification Service Method using Image Region Segmentation)

  • 박창민
    • 서비스연구
    • /
    • 제5권2호
    • /
    • pp.103-110
    • /
    • 2015
  • 최근, 3D FPS 게임에서 캐릭터의 분류는 매우 중요한 문제로 떠오르고 있다. 본 연구에서는 간단한 조작으로 의미객체의 화상 영역 분할을 이용한 게임 콘텐츠 분류 방법을 제안한다. 이 방법에서는, 우선 비선형 RGB 컬러 모델과 컬러양자화 방식을 사용했다. 입력 화상은 20개 미만 양자화 된 색을 표현하고 의미 있는 적은 수의 컬러 히스토그램을 사용한다. 그리고, 적은 블록으로 분할 된 이미지는 블록 단위 컬러 히스토그램 교차로 인접 블록과의 유사도를 계산한다. 왜냐하면, 질감 및 대상 블록의 경계에 있어서, 추출 블록 경계를 제외한 나머지를 사용하기 때문이다. 게임 오브젝트는 이들 방법에 에 의해 블록 경계 영역을 설정하고 FPS 게임 플레이에 사용될 수 있다. 실험을 통해, 우리는 각각의 기능을 사용하여 분류 방법에 대해 80% 이상의 정확도를 얻을 수 있었다. 따라서, 이 특성을 이용하여 게임콘텐츠를 효율적으로 분류 할 수 있고, 이는 게임 속도와 전략적 행동에 보다 나은 결과를 초래할 것으로 예상한다.

영역 기반의 영상 질의를 이용한 내용 기반 영상 검색 (Content-based image retrieval using region-based image querying)

  • 김낙우;송호영;김봉태
    • 한국통신학회논문지
    • /
    • 제32권10C호
    • /
    • pp.990-999
    • /
    • 2007
  • 본 논문에서는 효과적인 영상 검색을 위한 방법으로서 JSEG 영상 분할 기법을 통한 영역 기반의 영상 인덱싱 및 검색 기법을 제안한다. JSEG은 영상을 색상 분류에 따라 양자화하고 이에 영역 윈도우를 적용시켜 J-image를 만든 다음, 세부 분할된 영역의 성장과 병합을 통하여 영상을 효과적으로 분할하는 방법이다. 제안하는 영상 검색 시스템은 JSEG에 의해 분할된 영상을 사용자에게 질의 영상으로 주고, 사용자로 하여금 분할 영상에서 관심 영역군(群)을 선택하게 한다. 그리고 나서, 사용자 질의에 의해 선택된 영역의 MBR을 구하고 이 영역의 중심을 기준으로 다중 윈도우 마스크를 생성하여 적용시킴으로써 특정 관심 영역을 중심으로 한 영상의 전역적인 특징을 추출한다. 최종적으로 추출된 특징의 성능 비교를 위한 기술자로는 누적 히스토그램을 이용하였다. 제안된 방법은 특정 영역에서의 특징과 전역 특징을 동시에 추출하여 검색에 이용함으로써 보다 빠르고 정확하게 사용자가 원하는 영상을 제공할 수 있다. 실험 결과는 영상 색인 및 검색에 있어서 제안된 방법이 영상 기반의 검색 기법과 비교하여 더 효과적임을 보여준다.

Modular Cellular Neural Network Structure for Wave-Computing-Based Image Processing

  • Karami, Mojtaba;Safabakhsh, Reza;Rahmati, Mohammad
    • ETRI Journal
    • /
    • 제35권2호
    • /
    • pp.207-217
    • /
    • 2013
  • This paper introduces the modular cellular neural network (CNN), which is a new CNN structure constructed from nine one-layer modules with intercellular interactions between different modules. The new network is suitable for implementing many image processing operations. Inputting an image into the modules results in nine outputs. The topographic characteristic of the cell interactions allows the outputs to introduce new properties for image processing tasks. The stability of the system is proven and the performance is evaluated in several image processing applications. Experiment results on texture segmentation show the power of the proposed structure. The performance of the structure in a real edge detection application using the Berkeley dataset BSDS300 is also evaluated.

A Vehicular License Plate Recognition Framework For Skewed Images

  • Arafat, M.Y.;Khairuddin, A.S.M.;Paramesran, R.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권11호
    • /
    • pp.5522-5540
    • /
    • 2018
  • Vehicular license plate (LP) recognition system has risen as a significant field of research recently because various explorations are currently being conducted by the researchers to cope with the challenges of LPs which include different illumination and angular situations. This research focused on restricted conditions such as using image of only one vehicle, stationary background, no angular adjustment of the skewed images. A real time vehicular LP recognition scheme is proposed for the skewed images for detection, segmentation and recognition of LP. In this research, a polar co-ordinate transformation procedure is implemented to adjust the skewed vehicular images. Besides that, window scanning procedure is utilized for the candidate localization that is based on the texture characteristics of the image. Then, connected component analysis (CCA) is implemented to the binary image for character segmentation where the pixels get connected in an eight-point neighbourhood process. Finally, optical character recognition is implemented for the recognition of the characters. For measuring the performance of this experiment, 300 skewed images of different illumination conditions with various tilt angles have been tested. The results show that proposed method able to achieve accuracy of 96.3% in localizing, 95.4% in segmenting and 94.2% in recognizing the LPs with an average localization time of 0.52s.

Detection and Recognition of Vehicle License Plates using Deep Learning in Video Surveillance

  • Farooq, Muhammad Umer;Ahmed, Saad;Latif, Mustafa;Jawaid, Danish;Khan, Muhammad Zofeen;Khan, Yahya
    • International Journal of Computer Science & Network Security
    • /
    • 제22권11호
    • /
    • pp.121-126
    • /
    • 2022
  • The number of vehicles has increased exponentially over the past 20 years due to technological advancements. It is becoming almost impossible to manually control and manage the traffic in a city like Karachi. Without license plate recognition, traffic management is impossible. The Framework for License Plate Detection & Recognition to overcome these issues is proposed. License Plate Detection & Recognition is primarily performed in two steps. The first step is to accurately detect the license plate in the given image, and the second step is to successfully read and recognize each character of that license plate. Some of the most common algorithms used in the past are based on colour, texture, edge-detection and template matching. Nowadays, many researchers are proposing methods based on deep learning. This research proposes a framework for License Plate Detection & Recognition using a custom YOLOv5 Object Detector, image segmentation techniques, and Tesseract's optical character recognition OCR. The accuracy of this framework is 0.89.

Accuracy Assessment of Forest Degradation Detection in Semantic Segmentation based Deep Learning Models with Time-series Satellite Imagery

  • Woo-Dam Sim;Jung-Soo Lee
    • Journal of Forest and Environmental Science
    • /
    • 제40권1호
    • /
    • pp.15-23
    • /
    • 2024
  • This research aimed to assess the possibility of detecting forest degradation using time-series satellite imagery and three different deep learning-based change detection techniques. The dataset used for the deep learning models was composed of two sets, one based on surface reflectance (SR) spectral information from satellite imagery, combined with Texture Information (GLCM; Gray-Level Co-occurrence Matrix) and terrain information. The deep learning models employed for land cover change detection included image differencing using the Unet semantic segmentation model, multi-encoder Unet model, and multi-encoder Unet++ model. The study found that there was no significant difference in accuracy between the deep learning models for forest degradation detection. Both training and validation accuracies were approx-imately 89% and 92%, respectively. Among the three deep learning models, the multi-encoder Unet model showed the most efficient analysis time and comparable accuracy. Moreover, models that incorporated both texture and gradient information in addition to spectral information were found to have a higher classification accuracy compared to models that used only spectral information. Overall, the accuracy of forest degradation extraction was outstanding, achieving 98%.

표적분할 신뢰도 값 기반의 형태특징과 지역특징을 이용한 차량표적 분류기법 연구 (A Study on Vehicle Target Classification Method Using Both Shape and Local Features with Segmentation Reliability)

  • 양동원;이용헌;곽동민
    • 한국군사과학기술학회지
    • /
    • 제20권1호
    • /
    • pp.40-47
    • /
    • 2017
  • To classify the vehicle targets automatically using thermal images, there are usually two main categories of feature extraction method, local and shape feature extraction methods. Since thermal images have less texture information than color images, the shape feature extraction method is useful when the segmentation results are correct. However, if there are some errors in target segmentation, the shape feature may contain some errors, then the classification accuracy can be decreased. To overcome these problems, in this paper, we propose the segmentation reliability estimation method for target classification. The segmentation reliability can be estimated by using the difference information of average intensities and edge energies between the target and the background area. The estimated segmentation reliability is applied in the decision level fusion method of classification results using both shape and local features. Experiment results using the thermal images of the vehicle targets (main battle tank, armored personnel carrier, military truck, and an estate car) show that the proposed classification method and the segmentation reliability estimation method have a good performance in classification accuracy.

Apoptosis 세포의 자동화된 분할 및 인식을 위한 강인한 방법 (A Robust Method for Automatic Segmentation and Recognition of Apoptosis Cell)

  • 류해릉;신영숙
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제15권6호
    • /
    • pp.464-468
    • /
    • 2009
  • 본 연구는 Apoptosis세포들의 형상을 검출하기 위하여 전통적인 세포측정법과는 다른 영상기반 접근법을 제안한다. 이 방법은 세포측정 법의 단점을 극복하고 Apoptosis 세포들을 정확하게 인식할 수 있다. 본 연구에서 K-means 군집화 방법이 Apoptosis 세포의 거시적인 분할을 행하는 데 사용되었으며, '스네이코'라고 불리는 액티브 윤곽선 모델이 정밀한 경계선 검출을 위해 사용되었다. 그리고 Apoptosis세포들의 물리적 특징, 형태적 특징 그리고 무늬특징들을 포함하는 몇가지 특징들이 추출되었다. 마지막으로 Mahalanobis 거리 분류기가 Apoptosis세포와 비Apoptosis 세포로서 분할영상들을 분류한다.

AUTOMATIC BUILDING EXTRACTION BASED ON MULTI-SOURCE DATA FUSION

  • Lu, Yi Hui;Trinder, John
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.248-250
    • /
    • 2003
  • An automatic approach and strategy for extracting building information from aerial images using combined image analysis and interpretation techniques is described in this paper. A dense DSM is obtained by stereo image matching. Multi-band classification, DSM, texture segmentation and Normalised Difference Vegetation Index (NDVI) are used to reveal building interest areas. Then, based on the derived approximate building areas, a shape modelling algorithm based on the level set formulation of curve and surface motion has been used to precisely delineate the building boundaries. Data fusion, based on the Dempster-Shafer technique, is used to interpret simultaneously knowledge from several data sources of the same region, to find the intersection of propositions on extracted information derived from several datasets, together with their associated probabilities. A number of test areas, which include buildings with different sizes, shape and roof colour have been investigated. The tests are encouraging and demonstrate that the system is effective for building extraction, and the determination of more accurate elevations of the terrain surface.

  • PDF

물체 분할 기법을 이용한 내용기반 영상 검색 (A Content-Based Image Retrieval using Object Segmentation Method)

  • 송석진;차봉현;김명호;남기곤;이상욱;주재흠
    • 융합신호처리학회논문지
    • /
    • 제4권1호
    • /
    • pp.1-8
    • /
    • 2003
  • 현재 사회전반에 걸쳐 급격히 증가하고 있는 멀티미디어 정보를 효율적으로 관리, 활용할 수 있는 방법이 다양하게 연구되고 있다. 본 논문에서는 정지영상 검색을 위해 사용자가 질의(query)를 요구하면 질의 물체를 배경으로부터 분할한 후 유사물체를 영상 데이터베이스 내에서 검색할 수 있는 내용기반 영상검색 시스템을 구현하였다. 질의영상이 들어오면 우선 메디안 필터링 처리를 하여 잡음 제거한 후 캐니 에지 탐지법으로 물체의 에지를 구한다. 그리고 볼록 다각형 기법을 이용하여 배경으로부터 질의물체를 분할한다. 분할된 영상으로부터 컬러 히스토그램을 구한 후 데이터 베이스내의 영상과 히스토그램 인터섹션을 하여 유사치를 구한다 또한 공간적 그레이 분포와 질감특성을 추출하기 위해 분할된 영상을 그레이 영상으로도 변환시켜 웨블릿 변환한 후 밴디드 오토코릴로그램과 에너지를 구해 유사치를 구한다. 이렇게 구한 유사치을 더해 최종 유사영상을 검색하는데 물체 분할기법을 사용함으로써 배경에 강인할 뿐 아니라 보다 정확한 물체 검색이 가능하였다.

  • PDF