• Title/Summary/Keyword: Textile electrode

Search Result 60, Processing Time 0.021 seconds

Research on the Development of Conductive Composite Yarns for Application to Textile-based Electrodes and Smartwear Circuits (스마트웨어용 텍스타일형 전극 및 배선으로의 적용을 위한 전도성 복합사 개발 연구)

  • Hyelim Kim;Soohyeon Rho;Wonyoung Jeong
    • Fashion & Textile Research Journal
    • /
    • v.25 no.5
    • /
    • pp.651-660
    • /
    • 2023
  • This study aimed to research the local production of conductive composite yarn, a source material used in textile-type electrodes and circuits. The physical properties of an internationally available conductive composite yarn were analyzed. To manufacture the conductive composite yarn, we selected one type of conductive yarn with Ag-coated polyamide of 150d 1 ply, along with two types of polyethylene terephthalate (PET) with circular and triangular cross-sections, both with 150d 1 ply. The conductive composite yarn samples were manufactured at 250, 500, 750, and 1000 turns per meter (TPM). For both conductive composite yarn samples manufactured from two types of PET filaments, the twist contraction rate of the sample with a triangular cross-section was stable. Among the samples, the tensile strength of the sample manufactured at 750 TPM was the highest at approximately 4.1gf/d; the overall linear resistance was approximately 5.0 Ω/cm, which is within the target range. It was confirmed that the triangular cross-section sample manufactured with 750 TPM had a similar linear resistance value to the advanced product despite the increase in the number of twists. In future studies, we plan tomanufacture samples by varying the twist conditions to derive the optimal conductive yarn suitable for smartwear and smart textile manufacturing conditions.

Analysis of the Necessary Mechanical Properties of Embroiderable Conductive Yarns for Measuring Pressure and Stretch Textile Sensor Electrodes (생체 신호 측정 압력 및 인장 직물 센서 전극용 자수가 가능한 전도사의 필요 물성 분석)

  • Kim, Sang-Un;Choi, Seung-O;Kim, Joo-Yong
    • Science of Emotion and Sensibility
    • /
    • v.24 no.2
    • /
    • pp.49-56
    • /
    • 2021
  • In this study, we investigated the necessary mechanical properties of conductive multifilament yarns for fabricating the electrodes of biosignal measurement pressure and stretch textile sensors using embroidery. When electrodes and circuits for smart wearable products are produced through the embroidery process using conductive multifilament yarns, unnecessary material loss is minimized, and complex electrode shapes or circuit designs can be produced without additional processes using a computer embroidering machine. However, because ordinary missionary threads cannot overcome the stress in the embroidery process and yarn cutting occurs, herein, we analyzed the S-S curve, thickness, and twist structure, which are three types of silver-coated multifilament yarns, and measured the stress in the thread of the embroidery simultaneously. Thus, the required mechanical properties of the yarns in the embroidery process were analyzed. In the actual sample production, cutting occurred in silver-coated multifilament rather than silver-coated polyamide/polyester, which showed the lowest S-S curve. In the embroidery process, the twist was unwound through repetitive vertical movement. Further, we fabricated a piezoresistive pressure/tension sensor to measure gauge factor, which is an index for measuring biological signals. We confirmed that the sensor can be applied to the fabrication of embroidery electrodes, which is an important process in the mass production of smart wearable products.

Development and Assessment of Conductive Fabric Sensor for Evaluating Knee Movement using Bio-impedance Measurement Method (슬관절 운동 평가를 위한 생체 임피던스 측정용 전도성 섬유센서 개발 및 평가)

  • Lee, Byung-Woo;Lee, Chung-Keun;Cho, Ha-Kyung;Lee, Myoung-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.1
    • /
    • pp.37-44
    • /
    • 2011
  • This paper describes the development and assessment of conductive fabric sensor for evaluating knee movement using bio-impedance measurement method. The proposed strip-typed conductive fabric sensor is compared with a dot-typed Ag/AgCl electrode for evaluating validity under knee movement condition. Subjects are composed of ten males($26.6{\pm}2.591$) who have not had problems on their knee. The strip-typed conductive fabric sensor is analyzed by correlation and reliability between a dot-typed Ag/AgCl electrode and the strip-typed conductive fabric sensor. The difference of bio-impedance between a dot-typed Ag/AgCl electrode and the strip-typed conductive fabric sensor averages $7.067{\pm}13.987\;{\Omega}$ As the p-value is under 0.0001 in 99% of t-distribution, the strip-typed conductive fabric sensor is correlated with a dot-typed Ag/AgCl electrode by SPSS software. The strip-typed conductive fabric sensor has reliability when it is compared with a dot-typed Ag/AgCl electrode because most of bio-impedance values are in ${\pm}1.96$ standard deviation by Bland-Altman Analysis. As a result, the strip-typed conductive fabric sensor can be used for assessing knee movement through bio-impedance measurement method as a dot-typed Ag/AgCl electrode. Futhermore, the strip-typed conductive fabric sensor is available for wearable circumstances, applications and industries in the near future.

Properties of ITO Transparent Electrode for Electrochromic Display Based on Benzyl Viologen (Benzyl Viologen을 이용한 전기 변색소자에 있어서 ITO(Indium Tin Oxide)투명전극의 특성)

  • Kim, Sung Hoon;Yoon, Ji Young
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.11
    • /
    • pp.575-580
    • /
    • 1997
  • Benzyl viologen was synthesized and the electrochromic properties was examined. At an applied voltage of 2.6 V the electrocoloration was appeared but electrooptical response abruptly decreased after a certain period of time. It was a cause that the quality of the ITO film was degraded, e.g. the conductivity of the ITO film reduced from the original value. The ITO surfaces under some different conditions were observed by XRD and SEM.

  • PDF

Significance of N-moieties in regulating the electrochemical properties of nano-porous graphene: Toward highly capacitive energy storage devices

  • Khan, Firoz;Kim, Jae Hyun
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.129-139
    • /
    • 2018
  • The effects of N doping concentration and dopant moieties on the electrochemical properties of nanoporous graphene and their dependence on annealing temperature are investigated. Four types of N moieties - amide, amine, graphitic-N, and oxidized-N - are obtained, which transformed into pyridinic-N and pyrrolic-N upon annealing. The diffusion coefficient (D') of the ions in the electrode is the maximum at $400^{\circ}C$ because of a high level of N doping, whereas the second highest D0 value is obtained at $700^{\circ}C$ owing to a high level of reduction and N doping. The highest specific capacitance is obtained for the sample annealed at $400^{\circ}C$.

A Study on the Bathochromic of Poly(Ethylene Terephthalate) Fabrics by Plasma Polymerization (Plasma polymerization에 의한 PET 직물의 심색화에 관한 연구)

  • Cho, Hwan;Kim, Han-Ki;Jang, Byung-Yul;Lee, Kwang-Woo;Cho, In-Sool;Heo, Man-Woo
    • Textile Coloration and Finishing
    • /
    • v.5 no.3
    • /
    • pp.194-205
    • /
    • 1993
  • Plasma polymerization in prepared glow discharge was carried out to improve the bathochromic of dyed PET fabrics by using silicon containing vinyl monomer in plasma polymerization equipment which consists of a pair of electrodes was connected to the 13.56MHz RF generator. The optimum condition for the bathochromic effect was investigated on various plasma polymeriztion parameters. By plasma polymerization used silicon containing vinyl monomer, the bathochromic of dyed PET fabrics was very enhanced. The optimum conditions on this equipment were as follows ; electrode distance : 3cm, discharge output : 60W, gas pressure : 0.3 Torr, monomer flow rate : 30㎤/min. plasma polymerization time : 60sec. The apparent strength of plasma polymerized PET fabrics was increased about 40∼47% with decreasing about 3 of L value.

  • PDF

Production of Polypyrrole Coated PVA Nanoweb Electroconductive Textiles for Application to ECG Electrode (심전도용 전극으로의 적용을 위한 폴리피롤 코팅 PVA 나노웹 전기전도성 텍스타일의 제조)

  • Kim, Jae-Hyun;Yang, Hyuk-Joo;Cho, Gil-Soo
    • Fashion & Textile Research Journal
    • /
    • v.21 no.3
    • /
    • pp.363-369
    • /
    • 2019
  • This study developed electroconductive textiles by coating polypyrrole to PET nonwoven-based Polyvinyl Alcohol (PVA) nanoweb made by electrospinning and applying the developed electrotextiles as ECG Electrodes. To find the optimum coating conditions for high electrical conductivity, the ratios of 2.6-Naphthalenedisulfonic acid with Disodium Salt (NDS) vs Ammonium Persulfate (APS) as an oxidant and a doping agent in the solution were changed from 3:7 to 7:3; the immersion time of the specimen in the solution was 1 hour. PVA nanowebs coated with polypyrrole under various conditions were filmed with FE-SEM. FT-IR analysis was also performed to examine the presence of polypyrrole nanoparticles in the PVA nanoweb. The electrical resistance of the treated specimens were measured with a Multimeter. Consequently, the PVA Nano Web was undamaged even after heat treatment that allowed for coating. Uniform polypyrrole nanoparticles then formed on the surface of the PVA nanoweb after coating. The measured electrical resistance was shown to be at least $12K{\Omega}/{\Box }$ from a maximum of $3,456K{\Omega}/{\Box }$. The proper amount of NDS content had a positive effect on the conductivity improvement of electroconductive textiles; in addition, the highest electrical conductivity was achieved with a ratio of 3:7 between NDS and APS.

A Study on EMS Protective Gear Design and Its Effects for Elite Badminton Players with Knee Pain (무릎 통증이 있는 엘리트 배드민턴 선수를 위한 건식 E-textile 전극의 EMS(Electirc muscle stimulation) 보호대 설계 및 효과)

  • JuIl Lee;Jinhee Park;Jooyong Kim
    • Journal of Fashion Business
    • /
    • v.27 no.5
    • /
    • pp.93-107
    • /
    • 2023
  • This study aimed to design a knee brace with dry electrode EMS (Electrical Muscle Stimulation) for elite badminton players suffering from knee pain and assess its effectiveness in relieving pain and improving mobility. The assessment measured knee joint range of motion (ROM), Sargent jump height, and pain perception using a visual analog scale (VAS). Four experimental groups were established: stability, pain induction after 100 squats, muscle soreness induction with a regular knee brace, and muscle soreness induction with the EMS knee brace. The most suitable knee brace was selected from four samples to design the EMS knee brace. The conductive fabric was integrated into the inner surface of the knee brace to enhance EMS conductivity for the quadriceps muscles. Tensile strength tests showed that the dry electrode did not significantly affect the physical functionality of the knee brace.Regarding knee joint ROM and Sargent jump height, the EMS knee brace outperformed muscle soreness induction with a regular knee brace and wearing a standard knee brace. VAS measurements demonstrated that the EMS braces effectively alleviated pain perception in most cases. The results indicate the potential for developing EMS braces to alleviate pain and prevent injuries for athletes across various sports.

Stretchable Energy Harvester Based on Piezoelectric Composites and Kirigami Electrodes (압전 복합소재와 키리가미 섬유전극을 적용한 스트레쳐블 에너지 하베스팅 소자)

  • Boran Kim;Dong Yeol Hyeon;Kwi-Il Park
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.5
    • /
    • pp.525-530
    • /
    • 2023
  • Stretchable piezoelectric energy harvester (S-PEHs) based on composite materials are considered one of the potential candidates for realizing wearable self-powered devices for smart clothing and electronic skin. However, low energy conversion performance and expensive stretchable electrodes are major bottlenecks hindering the development and application of S-PEHs. Here, we fabricated the S-PEH by adopting the piezoelectric composites with enhanced stress transfer properties and kirigami-patterned textile electrodes. The optimum contents of piezoelectric BaTiO3 nanoparticles inside the carbon nanotube/ecoflex composite were selected as 30 wt% considering the trade-off between stretchability and energy harvesting performance of the device. The final S-PEH shows an output voltage and mechanical stability of ~5 V and ~3,000 cycles under repeated 150% of tensile strain, respectively. This work presents a cost-effective and scalable way to fabricate stretchable piezoelectric devices for self-powered wearable electronic systems.

Manufacture of Recycled PET E-Textile by Plasma Surface Modification and CNT Dip-Coating (플라즈마 표면 개질과 CNT 함침공정을 통한 고전도성의 재생PET사 전자섬유)

  • Jun-hyeok Jang;Sang-un Kim;Joo-Yong Kim
    • Science of Emotion and Sensibility
    • /
    • v.26 no.1
    • /
    • pp.79-86
    • /
    • 2023
  • This study aims to create a highly conductive E-textile made by recycling PET with a Dip-coating process. PET fiber with hydrophobic properties is characterized by the difficulty in imparting great conductivity when both Virgin and Recycled are made of electronic fibers through a Dip-coating process. To advance the effectiveness of the Dip-coating process, a sample made of recycled PET was surface modified for 50 w 5 minutes and 10 minutes employing a Covance-2mprfq model from FEMTO SCIENCE. After that, the sample was immersed in an SWCNT dispersion (.1 wt%, Carbon Co., Ltd.) for 5 minutes, and then dip coating was conducted to allow the solution to permeate well into the sample through a padder (DAELIM lab). After the procedure was completed, the resistance measurement was measured with a multimeter at both ends and then accurately remeasured with a wider electrode. As a result of this contemplation, it was affirmed that great conductivity might be given through an impregnation process through the plasma surface modification. When the surface modification was performed for 10 minutes, the resistance was reduced by up to 2.880 times. Dependent on the results of this research, E-fibers employed in the smart wearable sector can also be made of recycled materials, improving smart wearable products that can save oil resources and reduce carbon emissions.