DOI QR코드

DOI QR Code

Manufacture of Recycled PET E-Textile by Plasma Surface Modification and CNT Dip-Coating

플라즈마 표면 개질과 CNT 함침공정을 통한 고전도성의 재생PET사 전자섬유

  • 장준혁 (숭실대학교 스마트웨어러블공학과) ;
  • 김상운 (숭실대학교 스마트웨어러블공학과) ;
  • 김주용 (숭실대학교 유기신소재.파이버공학과)
  • Received : 2022.08.01
  • Accepted : 2022.10.19
  • Published : 2023.03.31

Abstract

This study aims to create a highly conductive E-textile made by recycling PET with a Dip-coating process. PET fiber with hydrophobic properties is characterized by the difficulty in imparting great conductivity when both Virgin and Recycled are made of electronic fibers through a Dip-coating process. To advance the effectiveness of the Dip-coating process, a sample made of recycled PET was surface modified for 50 w 5 minutes and 10 minutes employing a Covance-2mprfq model from FEMTO SCIENCE. After that, the sample was immersed in an SWCNT dispersion (.1 wt%, Carbon Co., Ltd.) for 5 minutes, and then dip coating was conducted to allow the solution to permeate well into the sample through a padder (DAELIM lab). After the procedure was completed, the resistance measurement was measured with a multimeter at both ends and then accurately remeasured with a wider electrode. As a result of this contemplation, it was affirmed that great conductivity might be given through an impregnation process through the plasma surface modification. When the surface modification was performed for 10 minutes, the resistance was reduced by up to 2.880 times. Dependent on the results of this research, E-fibers employed in the smart wearable sector can also be made of recycled materials, improving smart wearable products that can save oil resources and reduce carbon emissions.

본 연구의 목적은 PET를 재활용하여 만든 물질재생 PET사를 함침공정을 통해 고전도성의 E-textile로 제작하는 것이다. 소수성의 성질을 가지고 있는 PET사는 virgin과 recycled 모두 함침공정을 통해 전자섬유로 제작되었을 때에 높은 전도성을 부여하기 힘들다는 특징이 있다. 함침공정의 효율성 향상을 위해 FEMTO SCIENCE사의 Covance-2mprfq 모델을 사용하여 재생 PET사로 이루어진 시료를 50w 5분, 10분간 플라즈마로 표면 개질하였다. 이 후 SWCNT 분산액(.1wt%, cobon 사)에 5분간 시료를 담근 후 패딩기(Padder, DAELIM lab)를 통해 시료 안쪽으로 용액이 잘 스며들도록 Dip-coating 진행하였다. 공정이 완료된 후 저항측정을 양끝점에서 멀티미터를 통해 측정하고 좀 더 넓은 전극을 통해 정밀하게 다시 측정하였다. 고찰한 결과 플라즈마 표면 개질을 통해 함침공정을 통한 고전도성 부여가 가능해졌음을 확인할 수 있었다. 10분간 표면 개질한 경우 저항이 최대 2.880배 감소하였다. 본 연구결과를 기반으로 스마트 웨어러블 분야에서 활용되는 E-textile 또한 recycle 소재로 제작함으로써 석유자원을 절약하고 탄소배출량을 감소시킬 수 있는 스마트 웨어러블 제품을 개발하고자 한다.

Keywords

Acknowledgement

이 논문은 2022년도 정부(산업통상자원부)의 재원으로 한국산업기술진흥원의 지원을 받아 수행된 연구임(P0012770, 2022년 산업혁신인재성장지원사업).

References

  1. Alfahdawi, I. H., Osman, S., Hamid, R., & AL-Hadithi, A. I. (2019). Influence of PET wastes on the environment and high strength concrete properties exposed to high temperatures. Construction and Building Materials, 225, 1-12. https://doi.org/10.1016/j.conbuildmat.2019.07.178
  2. Ashori, A., & Nourbakhsh, A. (2009). Characteristics of wood-fiber plastic composites made of recycled materials. Waste Management, 29(4), 1-5. https://doi.org/10.1016/j.wasman.2008.10.001
  3. Choi, Y.-J., Kim, S.-H., & Lim, K.-S. (2012). Physical properties and objective hand values of recycled polyester knit fabrics. Textile Science and Engineering, 49(2), 98-105. https://doi.org/10.12772/TSE.2012.49.2.098
  4. Dong, W., Li, W., Tao, Z., & Wang, K. (2019). Piezoresistive properties of cement-based sensors: Review and perspective. Construction and Building Materials, 203, 146-163.
  5. Garside, M. (2019). Polyester fiber production globally 1975-2017. In (pp. 1-4): Retrieved from Statista: https://www.statista.com/statistics/912301....
  6. Hossain, G., Hossain, I. Z., & Grabher, G. (2020). Piezoresistive smart-textile sensor for inventory management record. Sensors and Actuators A: Physical, 315, 1-8.
  7. Islam, G., Ali, A., & Collie, S. (2020). Textile sensors for wearable applications: A comprehensive review. Cellulose, 27(11), 6103-6131. https://doi.org/10.1007/s10570-020-03215-5
  8. Jaffe, M., Easts, A. J., & Feng, X. (2020). Polyester fibers. In Thermal Analysis of Textiles and Fibers (pp. 1-5). Elsevier.
  9. Kim, S., Hahm, W., Park, S., Lee, K., & Koo, H. (2010). Development of environmentally-friendly recycled textiles. Fiber Technology and Industry, 12, 1-10.
  10. Lee, C. J., Lee, B. H., & Jaung, J. Y. (2002). Synthesis and application of disperse dyes for polyester and nylon microfiber. Proceedings of the Korean Fiber Society Conference, 135-138.
  11. Lee, S. Y., Won, J. S., Yoo, J. J., Hahm, W.-G., & Lee, S. G. (2012). Physical properties of recycled polyester yarns according to recycling methods. Textile Coloration and Finishing, 24(1), 91-96. https://doi.org/10.5764/TCF.2012.24.1.91
  12. LI, W. C., Tse, H., & Fok, L. (2016). Plastic waste in the marine environment: A review of sources, occurrence and effects. Science of the Total Environment, 566, 1-17.
  13. Nemani, S. K., Annavarapu, R. K., Mohammadian, B., Raiyan, A., Heil, J., Haque, M. A., Abdelaal, A., & Sojoudi, H. (2018). Surface modification of polymers: methods and applications. Advanced Materials Interfaces, 5(24), 1-26.
  14. Pang, K., Kotek, R., & Tonelli, A. (2006). Review of conventional and novel polymerization processes for polyesters. Progress in Polymer Science, 31(11), 1009-1037. https://doi.org/10.1016/j.progpolymsci.2006.08.008
  15. Rigamonti, L., Grosso, M., Moller, J., Sanchez, V. M., Magnani, S., & Christensen, T. H. (2014). Environmental evaluation of plastic waste management scenarios. Resources, Conservation and Recycling, 85, 1-11. https://doi.org/10.1016/j.resconrec.2014.01.006
  16. Stoppa, M., & Chiolerio, A. (2014). Wearable electronics and smart textiles: A critical review. Sensors, 14(7).
  17. Subramoniapillai, V., & Thilagavathi, G. (2021). Utilization of recycled polyester nonwovens as sorbent for oil spill cleanups. Research Journal of Textile and Apparel.
  18. Tan, C., Ahmad, I., & Heng, M. (2011). Characterization of polyester composites from recycled polyethylene terephthalate reinforced with empty fruit bunch fibers. Materials & Design, 32, 1-9. https://doi.org/10.1016/j.matdes.2010.06.048
  19. Upasani, P. S., Jain, A. K., Save, N., Agarwal, U. S., & Kelkar, A. K. (2012). Chemical recycling of PET flakes into yarn. Journal of Applied Polymer Science, 123(1), 1-6. https://doi.org/10.1002/app.34442
  20. Van der Velden, N. M., Kuusk, K., & Kohler, A. R. (2015). Life cycle assessment and eco-design of smart textiles: The importance of material selection demonstrated through e-textile product redesign. Materials & Design, 84, 313-324. https://doi.org/10.1016/j.matdes.2015.06.129
  21. Yun, H.-Y., Kim, S.-U., & Kim, J.-Y. (2021). Carbon-nanotube-based spacer fabric pressure sensors for biological signal monitoring and the evaluation of sensing capabilities. Science of Emotion & Sensibility, 24(2), 65-74. https://doi.org/10.14695/KJSOS.2021.24.2.65
  22. Zhang, M., Wang, M., Zhang, M., Gao, Q., Feng, X., Zhang, Y., Hu, J., & Wu, G. (2020). Stretchable conductive Ni@ Fe3O4@ Polyester fabric strain sensor with negative resistance variation and electromagnetic interference shielding. Organic Electronics, 81, 1-10.