• Title/Summary/Keyword: TextMining

Search Result 1,563, Processing Time 0.024 seconds

Reorganizing Social Issues from R&D Perspective Using Social Network Analysis

  • Shun Wong, William Xiu;Kim, Namgyu
    • Journal of Information Technology Applications and Management
    • /
    • v.22 no.3
    • /
    • pp.83-103
    • /
    • 2015
  • The rapid development of internet technologies and social media over the last few years has generated a huge amount of unstructured text data, which contains a great deal of valuable information and issues. Therefore, text mining-extracting meaningful information from unstructured text data-has gained attention from many researchers in various fields. Topic analysis is a text mining application that is used to determine the main issues in a large volume of text documents. However, it is difficult to identify related issues or meaningful insights as the number of issues derived through topic analysis is too large. Furthermore, traditional issue-clustering methods can only be performed based on the co-occurrence frequency of issue keywords in many documents. Therefore, an association between issues that have a low co-occurrence frequency cannot be recognized using traditional issue-clustering methods, even if those issues are strongly related in other perspectives. Therefore, in this research, a methodology to reorganize social issues from a research and development (R&D) perspective using social network analysis is proposed. Using an R&D perspective lexicon, issues that consistently share the same R&D keywords can be further identified through social network analysis. In this study, the R&D keywords that are associated with a particular issue imply the key technology elements that are needed to solve a particular issue. Issue clustering can then be performed based on the analysis results. Furthermore, the relationship between issues that share the same R&D keywords can be reorganized more systematically, by grouping them into clusters according to the R&D perspective lexicon. We expect that our methodology will contribute to establishing efficient R&D investment policies at the national level by enhancing the reusability of R&D knowledge, based on issue clustering using the R&D perspective lexicon. In addition, business companies could also utilize the results by aligning the R&D with their business strategy plans, to help companies develop innovative products and new technologies that sustain innovative business models.

On the Development of Risk Factor Map for Accident Analysis using Textmining and Self-Organizing Map(SOM) Algorithms (재해분석을 위한 텍스트마이닝과 SOM 기반 위험요인지도 개발)

  • Kang, Sungsik;Suh, Yongyoon
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.6
    • /
    • pp.77-84
    • /
    • 2018
  • Report documents of industrial and occupational accidents have continuously been accumulated in private and public institutes. Amongst others, information on narrative-texts of accidents such as accident processes and risk factors contained in disaster report documents is gaining the useful value for accident analysis. Despite this increasingly potential value of analysis of text information, scientific and algorithmic text analytics for safety management has not been carried out yet. Thus, this study aims to develop data processing and visualization techniques that provide a systematic and structural view of text information contained in a disaster report document so that safety managers can effectively analyze accident risk factors. To this end, the risk factor map using text mining and self-organizing map is developed. Text mining is firstly used to extract risk keywords from disaster report documents and then, the Self-Organizing Map (SOM) algorithm is conducted to visualize the risk factor map based on the similarity of disaster report documents. As a result, it is expected that fruitful text information buried in a myriad of disaster report documents is analyzed, providing risk factors to safety managers.

Data Mining and FNN-Driven Knowledge Acquisition and Inference Mechanism for Developing A Self-Evolving Expert Systems

  • Kim, Jin-Sung
    • Proceedings of the KAIS Fall Conference
    • /
    • 2003.11a
    • /
    • pp.99-104
    • /
    • 2003
  • In this research, we proposed the mechanism to develop self evolving expert systems (SEES) based on data mining (DM), fuzzy neural networks (FNN), and relational database (RDB)-driven forward/backward inference engine. Most former researchers tried to develop a text-oriented knowledge base (KB) and inference engine (IE). However, thy have some limitations such as 1) automatic rule extraction, 2) manipulation of ambiguousness in knowledge, 3) expandability of knowledge base, and 4) speed of inference. To overcome these limitations, many of researchers had tried to develop an automatic knowledge extraction and refining mechanisms. As a result, the adaptability of the expert systems was improved. Nonetheless, they didn't suggest a hybrid and generalized solution to develop self-evolving expert systems. To this purpose, in this study, we propose an automatic knowledge acquisition and composite inference mechanism based on DM, FNN, and RDB-driven inference. Our proposed mechanism has five advantages empirically. First, it could extract and reduce the specific domain knowledge from incomplete database by using data mining algorithm. Second, our proposed mechanism could manipulate the ambiguousness in knowledge by using fuzzy membership functions. Third, it could construct the relational knowledge base and expand the knowledge base unlimitedly with RDBMS (relational database management systems). Fourth, our proposed hybrid data mining mechanism can reflect both association rule-based logical inference and complicate fuzzy logic. Fifth, RDB-driven forward and backward inference is faster than the traditional text-oriented inference.

  • PDF

A Study of Consumer Perception on Freediving Suits Utilizing Big Data Analysis (빅데이터 분석을 활용한 프리다이빙 슈트에 대한 소비자 인식 연구)

  • Ji-Eun Kim;Eunyoung Lee
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.26 no.2
    • /
    • pp.87-99
    • /
    • 2024
  • Freediving, an underwater leisure sport that involves diving without the use of a breathing apparatus, has gained popularity among younger demographics through the viral spread of images and videos on social media platforms. This study employs prominent Big Data analysis techniques, including text mining, Latent Dirichlet Allocation (LDA) topic analysis, and opinion mining to explore the keywords associated with freediving suits over the past five years. The research aims to analyze the rapidly evolving market trends of freediving suits and the increasingly complex and diverse consumer perceptions to provide foundational data for activating the freediving suit market and developing strategies for sustained growth. The study identified the keyword 'size' related to freediving suits and conducted opinion mining on 'freediving suit sizes'. Although the results showed a higher positive than negative sentiment, negative keywords were also extracted, indicating the need to understand and mitigate the negative factors associated with 'size'. The findings offer vital guidelines for the advancement of the freediving suit market and enhancing consumer satisfaction. This study is important as it contributes foundational data for continuous growth strategies of the freediving suit market.

Analysis on Research Trend of Productivity Using Text Mining - Focusing on KSCE Journal - (텍스트 마이닝을 통한 건설 생산성 분야의 연구동향 분석 - KSCE 저널을 중심으로 -)

  • Gu, Bongil;Huh, Youngki
    • Korean Journal of Construction Engineering and Management
    • /
    • v.21 no.2
    • /
    • pp.15-21
    • /
    • 2020
  • The relationship between keywords, found in all productivity related papers published in the KSCE journal for last 15 years, were analyzed in order to reveal a research trend in the area using text mining and A-Priori algorithm. As the results, it is found that the word of 'productivity' is most closely related to the words of 'work' and 'labor'. Futhermore, the word is somewhat related to those of 'factor', 'model', simulation', and 'work time'. It is also revealed that, on the other hand, the words of 'machine' and 'equipment' have little relationships with the keyword. This research will be a great help for academia to understand a research trend in the area of construction productivity.

Text Mining Techniques for Adaptable Learning (적응적인 학습을 위한 텍스트 마이닝 기술)

  • Kim, Cheon-Shik;Jung, Myung-Hee;Hong, You-Sik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.3
    • /
    • pp.31-39
    • /
    • 2008
  • Until now, there are many technologies to improve studying ability using e-learning system. In most of e-learning system, learners are studying through the lecture materials and studying problems. The studying ability and intention, however, can be improved through the shared materials and discussion. In this case, learning materials are shared by the learners' discussion and shared materials through the board Internet and MSN. Such data was not classified by learners; it was not easy for the learners to search related valuable information. Therefore, it was not helping to learning. The technologies of most text mining extract summary data from the collection of document or classify into similar document from the complex document. In this paper, we implemented e-learning system for learners to improve learning abilities and especially, applied text mining technology to classify learning material for helping learners.

Lexical and Phrasal Analysis of Online Discourse of Type 2 Diabetes Patients based on Text-Mining (텍스트마이닝 기법을 이용한 제 2형 당뇨환자 온라인 담론의 어휘 및 구문구조 분석)

  • Hwang, Moonl-Hyon;Park, Jungsik
    • Journal of Digital Convergence
    • /
    • v.12 no.6
    • /
    • pp.655-667
    • /
    • 2014
  • This paper has identified five major categories of the T2D patients' concerns based on an online forum where the patients voluntarily verbalized their naturally occurring emotional reactions and concerns related to T2D. We have emphasized the fact that the lexical and phrasal analysis brought to the forefront the prevailing negative reactions and desires for clear information, professional advice, and emotional support. This study used lexical and phrasal analysis based on text-mining tools to estimate the potential of using a large sample of patient conversation of a specific disease posted on the internet for clinical features and patients' emotions. As a result, the study showed that quantitative analysis based on text-mining is a viable method of generalizing the psychological concerns and features of T2D patients.

Research Trend Analysis on Living Lab Using Text Mining (텍스트 마이닝을 이용한 리빙랩 연구동향 분석)

  • Kim, SeongMook;Kim, YoungJun
    • Journal of Digital Convergence
    • /
    • v.18 no.8
    • /
    • pp.37-48
    • /
    • 2020
  • This study aimed at understanding trends of living lab studies and deriving implications for directions of the studies by utilizing text mining. The study included network analysis and topic modelling based on keywords and abstracts from total 166 thesis published between 2011 and November 2019. Centrality analysis showed that living lab studies had been conducted focusing on keywords like innovation, society, technology, development, user and so on. From the topic modelling, 5 topics such as "regional innovation and user support", "social policy program of government", "smart city platform building", "technology innovation model of company" and "participation in system transformation" were extracted. Since the foundation of KNoLL in 2017, the diversification of living lab study subjects has been made. Quantitative analysis using text mining provides useful results for development of living lab studies.

An Analysis of Research Trends in Computational Thinking using Text Mining Technique (텍스트 마이닝 기법을 활용한 컴퓨팅 사고력 연구 동향 분석)

  • Lee, Jaeho;Jang, Junhyung
    • Journal of The Korean Association of Information Education
    • /
    • v.23 no.6
    • /
    • pp.543-550
    • /
    • 2019
  • In 2006, Janet Wing defined computational thinking and operated SW education as a formal curriculum in the UK in 2013. This study collected related research papers by using computational thinking, which has recently increased in importance, and analyzed it using text mining. In the first, CONCOR analysis was conducted with the keyword of computational thinking. In the second, text mining of the components of computational thinking was selected by the repr23esentative academic journals at domestic and foreign. As a result of the two-time analysis, first, abstraction, algorithm, data processing, problem decomposition, and pattern recognition were the core of the study of computational thinking component. Second, research on convergence education centered on computational thinking and science and mathematics subjects was actively conducted. Third, research on computational thinking has been expanding since 2010. Research and development of the classification and definition of computational thinking and components and applying them to education sites should be conducted steadily.

Comparative Analysis of Work-Life Balance Issues between Korea and the United States (워라밸 이슈 비교 분석: 한국과 미국)

  • Lee, So-Hyun;Kim, Minsu;Kim, Hee-Woong
    • The Journal of Information Systems
    • /
    • v.28 no.2
    • /
    • pp.153-179
    • /
    • 2019
  • Purpose This study collects the issues about work-life balance in Korea and United States and suggests the specific plans for work-life balance by the comparison and analysis. The objective of this study is to contribute to the improvement of people's life quality by understanding the concept of work-life balance that has become the issue recently and offering the detailed plans to be considered in respect of individual, corporate and governmental level for society of work-life balance. Design/methodology/approach This study collects work-life balance related issues through recruit sites in Korea and United States, compares and analyzes the collected data from the results of three text mining techniques such as LDA topic modeling, term frequency analysis and keyword extraction analysis. Findings According to the text mining results, this study shows that it is important to build corporate culture that support work-life balance in free organizational atmosphere especially in Korea. It also appears that there are the differences against whether work-life balance can be achieved and recognition and satisfaction about work-life balance along type of company or sort of working. In case of United States, it shows that it is important for them to work more efficiently by raising teamwork level among team members who work together as well as the role of the leaders who lead the teams in the organization. It is also significant for the company to provide their employees with the opportunity of education and training that enables them to improve their individual capability or skill. Furthermore, it suggests the roles of individuals, company and government and specific plans based on the analysis of text mining results in both countries.