• 제목/요약/키워드: Text based

검색결과 3,987건 처리시간 0.038초

텍스트 마이닝을 위한 그래프 기반 텍스트 표현 모델의 연구 동향 (A Study on Research Trends of Graph-Based Text Representations for Text Mining)

  • 장재영
    • 한국인터넷방송통신학회논문지
    • /
    • 제13권5호
    • /
    • pp.37-47
    • /
    • 2013
  • 텍스트 마이닝은 비정형화된 텍스트를 분석하여 그 안에 내재된 패턴, 추세, 분포 등의 고급정보들을 추출하는 분야이다. 텍스트 마이닝은 기본적으로 비정형 데이터를 가정하므로 텍스트를 단순화된 모델로 표현하는 것이 필요하다. 현재까지 가장 많이 사용되고 있는 모델은 텍스트를 단순한 단어들의 집합으로 표현한 벡터공간 모델이다. 그러나 최근 들어 단어들의 의미적 관계까지 표현하기 위해 그래프를 이용한 텍스트 표현 모델을 많이 사용하고 있다. 본 논문에서는 텍스트 마이닝을 위한 기존의 연구 중에서 그래프에 기반한 텍스트 표현 모델의 방법들과 그들의 특징들을 기술한다. 또한 그래프 기반 텍스트 마이닝의 향후 발전방향에 대해서도 논한다.

자연 영상에서 획 너비 추정 기반 텍스트 영역 이진화 (The Binarization of Text Regions in Natural Scene Images, based on Stroke Width Estimation)

  • ;김정환;이귀상
    • 스마트미디어저널
    • /
    • 제1권4호
    • /
    • pp.27-34
    • /
    • 2012
  • In this paper, a novel text binarization is presented that can deal with some complex conditions, such as shadows, non-uniform illumination due to highlight or object projection, and messy backgrounds. To locate the target text region, a focus line is assumed to pass through a text region. Next, connected component analysis and stroke width estimation based on location information of the focus line is used to locate the bounding box of the text region, and each box of connected components. A series of classifications are applied to identify whether each CC(Connected component) is text or non-text. Also, a modified K-means clustering method based on an HCL color space is applied to reduce the color dimension. A text binarization procedure based on location of text component and seed color pixel is then used to generate the final result.

  • PDF

텐서보팅을 이용한 텍스트 배열정보의 획득과 이를 이용한 텍스트 검출 (Extraction of Text Alignment by Tensor Voting and its Application to Text Detection)

  • 이귀상;또안;박종현
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권11호
    • /
    • pp.912-919
    • /
    • 2009
  • 본 논문에서는 이차원 텐서보팅과 에지 기반 방법을 이용하여 자연영상에서 문자를 검출하는 새로운 방법을 제시한다. 텍스트의 문자들은 보통 연속적인 완만한 곡선 상에 배열되어 있고 서로 가깝게 위치하며, 이러한 특성은 텐서보팅에 의하여 효과적으로 검출될 수 있다. 이차원 텐서보팅은 토큰의 연속성을 curve saliency 로 산출하며 이러한 특성은 다양한 영상해석에 사용된다. 먼저 에지 검출을 이용하여 영상 내의 텍스트 영역이 위치할 가능성이 있는 텍스트 후보영역을 찾고 이러한 후보영역의 연속성을 텐서보팅에 의해 검증하여 잡음영역을 제거하고 텍스트 영역만을 구분한다. 실험 결과, 제안된 방법은 복잡한 자연영상에서 효과적으로 텍스트 영역을 검출함을 확인하였다.

Text Location and Extraction for Business Cards Using Stroke Width Estimation

  • Zhang, Cheng Dong;Lee, Guee-Sang
    • International Journal of Contents
    • /
    • 제8권1호
    • /
    • pp.30-38
    • /
    • 2012
  • Text extraction and binarization are the important pre-processing steps for text recognition. The performance of text binarization strongly related to the accuracy of recognition stage. In our proposed method, the first stage based on line detection and shape feature analysis applied to locate the position of a business card and detect the shape from the complex environment. In the second stage, several local regions contained the possible text components are separated based on the projection histogram. In each local region, the pixels grouped into several connected components based on the connected component labeling and projection histogram. Then, classify each connect component into text region and reject the non-text region based on the feature information analysis such as size of connected component and stroke width estimation.

시소러스 도구를 이용한 실시간 개념 기반 문서 분류 시스템 (A Real-Time Concept-Based Text Categorization System using the Thesauraus Tool)

  • 강원석;강현규
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제26권1호
    • /
    • pp.167-167
    • /
    • 1999
  • The majority of text categorization systems use the term-based classification method. However, because of too many terms, this method is not effective to classify the documents in areal-time environment. This paper presents a real-time concept-based text categorization system,which classifies texts using thesaurus. The system consists of a Korean morphological analyzer, athesaurus tool, and a probability-vector similarity measurer. The thesaurus tool acquires the meaningsof input terms and represents the text with not the term-vector but the concept-vector. Because theconcept-vector consists of semantic units with the small size, it makes the system enable to analyzethe text with real-time. As representing the meanings of the text, the vector supports theconcept-based classification. The probability-vector similarity measurer decides the subject of the textby calculating the vector similarity between the input text and each subject. In the experimentalresults, we show that the proposed system can effectively analyze texts with real-time and do aconcept-based classification. Moreover, the experiment informs that we must expand the thesaurustool for the better system.

Table based Matching Algorithm for Soft Categorization of News Articles in Reuter 21578

  • Jo, Tae-Ho
    • 한국멀티미디어학회논문지
    • /
    • 제11권6호
    • /
    • pp.875-882
    • /
    • 2008
  • This research proposes an alternative approach to machine learning based ones for text categorization. For using machine learning based approaches for any task of text mining, documents should be encoded into numerical vectors; it causes two problems: huge dimensionality and sparse distribution. Although there are various tasks of text mining such as text categorization, text clustering, and text summarization, the scope of this research is restricted to text categorization. The idea of this research is to avoid the two problems by encoding a document or documents into a table, instead of numerical vectors. Therefore, the goal of this research is to improve the performance of text categorization by proposing approaches, which are free from the two problems.

  • PDF

텍스트 중심 유아 미디어 리터러시 교육 프로그램 개발 및 적용 효과 (The Development and Effects of the Text-Based Media Literacy Program for Young Children)

  • 이재은;조은진
    • 아동학회지
    • /
    • 제38권1호
    • /
    • pp.77-93
    • /
    • 2017
  • Objective: The purpose of this study was to develop a text-based media literacy program and to examine its effects on young children's understanding and expression of media text. Methods: The participants were 54 5-year-old kindergarteners assigned to an experimental or a control group, with 27 children per group. The text-based media literacy program was based on the ADDIE model and was administered to the experimental group for 8 weeks. The pre- and post-test instruments measured media text understanding and expression ability and were patterned after those used by British Film Institute (2003) and other major studies. Results: The experimental group showed higher levels of media text understanding and expression than the control group. Conclusion: The results are discussed with respect to their implications for educational practice and future research.

Deep-Learning Approach for Text Detection Using Fully Convolutional Networks

  • Tung, Trieu Son;Lee, Gueesang
    • International Journal of Contents
    • /
    • 제14권1호
    • /
    • pp.1-6
    • /
    • 2018
  • Text, as one of the most influential inventions of humanity, has played an important role in human life since ancient times. The rich and precise information embodied in text is very useful in a wide range of vision-based applications such as the text data extracted from images that can provide information for automatic annotation, indexing, language translation, and the assistance systems for impaired persons. Therefore, natural-scene text detection with active research topics regarding computer vision and document analysis is very important. Previous methods have poor performances due to numerous false-positive and true-negative regions. In this paper, a fully-convolutional-network (FCN)-based method that uses supervised architecture is used to localize textual regions. The model was trained directly using images wherein pixel values were used as inputs and binary ground truth was used as label. The method was evaluated using ICDAR-2013 dataset and proved to be comparable to other feature-based methods. It could expedite research on text detection using deep-learning based approach in the future.

Text Categorization for Authorship based on the Features of Lingual Conceptual Expression

  • Zhang, Quan;Zhang, Yun-liang;Yuan, Yi
    • 한국언어정보학회:학술대회논문집
    • /
    • 한국언어정보학회 2007년도 정기학술대회
    • /
    • pp.515-521
    • /
    • 2007
  • The text categorization is an important field for the automatic text information processing. Moreover, the authorship identification of a text can be treated as a special text categorization. This paper adopts the conceptual primitives' expression based on the Hierarchical Network of Concepts (HNC) theory, which can describe the words meaning in hierarchical symbols, in order to avoid the sparse data shortcoming that is aroused by the natural language surface features in text categorization. The KNN algorithm is used as computing classification element. Then, the experiment has been done on the Chinese text authorship identification. The experiment result gives out that the processing mode that is put forward in this paper achieves high correct rate, so it is feasible for the text authorship identification.

  • PDF

디지털 비디오를 위한 획기반 자막 추출 알고리즘 (A Stroke-Based Text Extraction Algorithm for Digital Videos)

  • 정종면;차지훈;김규헌
    • 한국지능시스템학회논문지
    • /
    • 제17권3호
    • /
    • pp.297-303
    • /
    • 2007
  • 본 논문에서는 디지털 비디오를 위한 획기반 자막 추출 알고리즘을 제안한다. 제안된 알고리즘은 자막 탐지, 자막 위치 찾기 자막 분리 단계와 분리된 자막에 대한 기하학적 검증 과정으로 구성된다. 자막 탐지 단계는 연속적으로 입력되는 프레임 중 자막이 존재하는 프레임을 찾는 단계로써, 주어진 프레임으로부터 자막이 될 가능성이 높은 점, 즉 씨앗점을 추출한 다음 씨앗점에 대하여 모폴로지 연산을 수행한다. 자막 위치 찾기 단계는 자막이 존재하는 프레임에서 자막의 위치를 찾는 단계로써, 씨앗점을 포함하는 에지에 대한 모폴로지 연산과 프로젝션을 통해 수행된다. 자막 분리 단계에서는 자막과 배경의 색상 분포와 복잡한 배경을 고려하여 자막을 강건하게 분리한다. 마지막으로 자막에 대한 사전 정보를 이용하여 분리된 자막에 대한 기하학적 검증 과정을 수행하여 최종 결과를 얻는다.