• Title/Summary/Keyword: Testing Equipment

Search Result 860, Processing Time 0.03 seconds

A Research Trend on On-Line/Off-Line PD Insulation Diagnostic System (온라인 및 오프라인 PD 모니터링에 관한 연구 동향)

  • Choo, Jong-Hoon;Hong, Chang-Il;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.2008-2009
    • /
    • 2007
  • The paper considers the relation between on-line monitoring and diagnostics on the one hand and high-voltage (HV) withstand and partial discharge (PD) on-site testing on the other. HV testing supplies the basic data (fingerprints) for diagnostics. In case of warnings by on-line diagnostic systems, off-line withstand and PD testing delivers the best possible information about defects and enables the classification of the risk. Because alternating voltage (AC) is the most important test voltage, the AC generation on site is considered. Frequency tuned resonant (ACRF) test systems are best adapted to on-site conditions. They can be simply combined with PD measuring equipment. The available ACRF test systems and their application to electric power equipment -from cable systems to power transformers - is introduced.

  • PDF

An Estimation of Performance Test and Uncertainty of Measurement for a Large Axial-flow Fan Based on ANSI/AMCA 210 Standard (ANSI/AMCA 210 기준에 의한 대형 축류 송풍기의 성능시험 및 측정 불확도 평가)

  • Ko, Hee-Hwan;Chung, Cheol-Young;Kim, Kyung-Yup
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.2
    • /
    • pp.24-29
    • /
    • 2014
  • In general, a large-capacity axial flow fan is used for industrial processes or ventilation in a social overhead capital infrastructure. The main characteristics of the large axial-flow fan need a lot of electrical power consumption and operate 24 hours a day, 365 days a year. Since the large axial flow fan consumes several hundreds to thousands kW per hour, both manufacturer and consumer are struggling to select high efficiency products for saving energy and reducing operation cost. Therefore, the performance testing should be accurately conducted in experimental equipments. The performance estimation and uncertainty of measurement of the axial-flow fan gathered from the result from nozzle shaped testing equipments certified with ANSI/AMCA standard and duct shaped testing equipment under the same experimental condition. The experimental results from both facilities have maximum 17% differences in performance evaluation and uncertainty of measurement. As considering that the differences, it is doubt about the reliability of testing result. The test was repeated with the specific term during 12 months because it is important to fully reflect the real conditions and to decide the repeatability of data. The evaluation of duct type testing facilities was failed to get an uncertainty measure. Testing results were previously published. As a series of previous paper, axial fan (∅1690 mm) and duct type testing facilities were fabricated. The purpose of fabricating testing equipment was testing an uncertainty measurement under the controlled environments.

Measurement of $G_{max}$ of Sands Using Bender Element in Resonant Column and Torsional Shear Equipment (공진주/비틂전단 시험 및 벤더엘리먼트 시험을 이용한 사질토 지반의 최대전단탄성계수 평가)

  • Kim Dong-Soo;Youn Jun-Ung;Lee Sei-Hyun;Choo Yun-Wook
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.10
    • /
    • pp.17-25
    • /
    • 2005
  • The bender element method is an experimental technique to determine very small strain ($<10^{-3}\%$), elastic shear modulus of a soil, $G_{max}$ by measuring the velocity of shear wave propagation through a sample. Bender elements have been applied as versatile transducers to measure small strain modulus of wet or dry soils in various laboratory apparatus. In this paper, bender element (BE), resonant column (RC) and torsional shear (TS) tests were performed on Toyoura sand at various testing conditions using the modified Stokoe type RC/TS testing equipment capable of performing BE test. Based on the results, applicabilities of the testing method using bender element were evaluated by comparing the values of $G_{max}$ obtained from RC/TS and BE testing methods. For more dependable evaluation, the loading frequency of each testing method was considered for the results obtained for samples in saturated condition by adapting Biot's theory.

Development of Short-circuit Testing Facility for Distribution Transformers (배전용 변압기 단락강도 시험설비 개발)

  • Park, Ji-Hun;Min, Yun-Hong;Kang, Young-Hak;You, Ho-Keun;Ahn, Kyu-Sun;Ham, Gil-Ho;Oh, Chang-Ju
    • Proceedings of the KIEE Conference
    • /
    • 2002.04a
    • /
    • pp.64-67
    • /
    • 2002
  • To increase the short-circuit testing capacity of distribution transformers, testing facility has been installed for KEPCO in Vi-wang. The power supply of testing facility is directly supplied from the network substation located closely. Testing can be performed up to 300 kVA for single-phase transformers, 500 kVA for three-phase transformers. Operating with this facility, the distribution company is able to maintain the reliable supply of electricity. Also the critical quality of transformers from manufacturers can be verified by short-circuit testing. This paper describes the design concept and specification of newly developed equipment and the procedure of short-circuit test.

  • PDF

A Design and Implementation of the Temperature Testing Equipment Malfunction Monitoring System Using Arduino (아두이노를 이용한 온도시험 장비 오동작 감시 시스템 설계 및 구현)

  • Yoon, Myung-Seob;Park, Koo-Rack;Ko, Chang-Bae
    • Journal of Digital Convergence
    • /
    • v.14 no.5
    • /
    • pp.317-323
    • /
    • 2016
  • This paper suggests a system that can detect malfunctions of the temperature testing equipment, and then notify this information to surroundings using arduino. Precision electronics need a test under extremely high/low temperature using temperature called a chamber. If this chamber have a malfunction situation, the precision electronics under test is damaged and scrapped. Especially when the temperature test is automatically conducted at night with no representative, this system monitors the actual temperature of the tested product in real-time by attaching a temperature sensor to the inside of the test equipment. In case when it is out of the temperature range set up by the tester, the damage to high-priced products can be prevented in the condition of extremely high/low temperature, by turning off the power of the temperature testing equipment, and also notifying this information to the worker at night-time. Regardless of the equipment manufacturers, proposed system in this paper can be applied to all kind of temperature testing equipments, and it can be also produced for low cost.

The Effect of New and Renewable Energy Equipment KS Certification Requirements on the Performance of Firms (신재생에너지설비 KS인증 요구사항이 기업 성과에 미치는 영향)

  • Han, Yun-Cheol;Kim, Gunwoo;Kang, Kyu-Young
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.5
    • /
    • pp.85-99
    • /
    • 2017
  • New and Renewable Energy Equipment Certification program has been integrated into the KS(Korean Industrial Standards) certification system as of July 29, 2015. This study is to determine whether the KS certification requirement has had a positive effect on corporate performance (e.g. quality improvement, financial result, customer satisfaction) within those that had already acquired the New and Renewable Energy Equipment KS certification. As a result, among the requirements for the KS certification, quality management, product management, and product testing have a positive impact on product quality improvement, and product testing has shown a positive influence on customer satisfaction. Although requisite for the KS certification did not have a significant effect on financial outcome such as increase in revenue, it has shown to have positive consequence to some extent on those firms that newly obtained the certification.

High-accuracy quantitative principle of a new compact digital PCR equipment: Lab On An Array

  • Lee, Haeun;Lee, Cherl-Joon;Kim, Dong Hee;Cho, Chun-Sung;Shin, Wonseok;Han, Kyudong
    • Genomics & Informatics
    • /
    • v.19 no.3
    • /
    • pp.34.1-34.6
    • /
    • 2021
  • Digital PCR (dPCR) is the third-generation PCR that enables real-time absolute quantification without reference materials. Recently, global diagnosis companies have developed new dPCR equipment. In line with the development, the Lab On An Array (LOAA) dPCR analyzer (Optolane) was launched last year. The LOAA dPCR is a semiconductor chip-based separation PCR type equipment. The LOAA dPCR includes Micro Electro Mechanical System that can be injected by partitioning the target gene into 56 to 20,000 wells. The amount of target gene per wells is digitized to 0 or 1 as the number of well gradually increases to 20,000 wells because its principle follows Poisson distribution, which allows the LOAA dPCR to perform precise absolute quantification. LOAA determined region of interest first prior to dPCR operation. To exclude invalid wells for the quantification, the LOAA dPCR has applied various filtering methods using brightness, slope, baseline, and noise filters. As the coronavirus disease 2019 has now spread around the world, needs for diagnostic equipment of point of care testing (POCT) are increasing. The LOAA dPCR is expected to be suitable for POCT diagnosis due to its compact size and high accuracy. Here, we describe the quantitative principle of the LOAA dPCR and suggest that it can be applied to various fields.

Trend in Off-Line PD Monitoring with HVAC Testing (배전반 설비의 온라인 모니터링 및 진단의 동향)

  • Yun, Ju-Ho;Hong, Chang-Il;Hwang, Jong-Sun;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.529-530
    • /
    • 2007
  • The paper considers the relation between on-line monitoring and diagnostics on the one hand and high-voltage (HV) withstand and partial discharge (PD) on-site testing on the other. HV testing supplies the basic data (fingerprints) for diagnostics. In case of warnings by on-line diagnostic systems, off-line withstand and PD testing delivers the best possible information about defects and enables the classification of the risk. Because alternating voltage (AC) is the most important test voltage, the AC generation on site is considered. Frequency tuned resonant (ACRF) test systems are best adapted to on-site conditions. They can be simply combined with PD measuring equipment. The available ACRF test systems and their application to electric power equipment -from cable systems to power transformers - is described.

  • PDF

Temperature Distribution Monitoring of Transformer Using IRR-Camera (적외선방사카메라를 이용한 변압기 온도분포 모니터링)

  • 이우선;정찬문;서용진
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.459-462
    • /
    • 2002
  • The conventional thermal insulator and power transformer testing is widely used in surface aging measurement of outside insulator because those testing can carry out very short time in Lab testing. Also thermal testing is able to offer the standard judgement of relative degradation level of outside HV machine. There it is very useful method compare to previous conventional thermal testing method and effective Lab testing method. But surface discharges(SD) have very complex characteristics of discharge pattern so it is required estimation research to development of precise analysis method. In recent, the study of IRR-camera is carrying out discover of temperature of power equipment through condition diagnosis and system development of degradation diagnosis. In this study, thermal testing of Power transformer is measured with partial temperature distribution in real time.

  • PDF

Temperature Distribution Monitoring of Transformer (변압기 온도 변화특성 모니터링)

  • Lee, Woo-Sun;Jung, Chan-Moon;Son, Dong-Min;Seo, Young-Jin;Lim, Jang-Sub
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.08a
    • /
    • pp.69-72
    • /
    • 2002
  • The conventional thermal insulator and power transformer testing is widely used in surface aging measurement of outside insulator because those testing can carry out very short time in Lab testing. Also thermal testing is able to offer the standard judgement of relative degradation level of outside HV machine. There it is very useful method compare to previous conventional thermal testing method and effective Lab testing method. But surface discharges(SD) have very complex characteristics of discharge pattern so it is required estimation research to development of precise analysis method. In recent, the study of IRR-camera is carrying out discover of temperature of power equipment through condition diagnosis and system development of degradation diagnosis. In this study, thermal testing of power transformer is measured with partial temperature distribution in real time.

  • PDF