• 제목/요약/키워드: Test Validation

검색결과 1,781건 처리시간 0.028초

이중격실 Pool 화재에 대한 FDS 검증분석 (Validation of FDS for the Pool Fires within Two Rooms)

  • 배용범;류수현;김윤일;이상규;금오현;박종석
    • 한국화재소방학회논문지
    • /
    • 제24권5호
    • /
    • pp.60-67
    • /
    • 2010
  • 화재분석모델이 제한사항 내에서 화재 피해를 신뢰성 있게 예측하기 위해서는 화재분석모델에 대한 검증분석이 반드시 이루어져야 하며, 이러한 검증분석 과정은 일반적으로 실증실험 결과와 비교함으로서 이루어진다. 본 연구의 목적은 화재분석모델인 FDS의 이중격실 Pool 화재에 대한 예측 능력을 평가하고, FDS의 중요 입력값(열방출률 및 환기량)의 미소변화에 따른 출력값(온도, 농도, 열유속)의 민감도를 분석하기 위함이다. FDS의 예측능력 평가와 FDS 입력변수의 민감도 분석을 위해 국제공동연구 PRISME 프로잭트로부터 화재실증 결과와 FDS 결과물을 비교분석하였다. 이중격실 Pool 화재에 대한 FDS의 예측능력은 화재실증 실험결과와 비교하여 약 ${\pm}$20% 오차범위를 나타내었다. 또한, FDS의 입력변수에 대한 민감도는 열방출율의 미소변화에 따라 비교적 높은 출력값의 변화가 나타났으며, 환기량의 미소변화에 따라 출력값 변화는 연소생성물의 농도에만 영향을 미쳤다.

DO-278의 Validation & Verification에 적합한 WA-DGNSS 기준국 소프트웨어의 모듈별 통합 검증 방법론 제시 (A Suggestion of Methodologies for Modular and Integrated Verification of WA-DGNSS Reference Station Software Suitable for Validation & Verification of DO-278)

  • 윤동환;박병운;최완식;기창돈;서승우;박준표
    • 한국항행학회논문지
    • /
    • 제19권1호
    • /
    • pp.15-21
    • /
    • 2015
  • WA-DGNSS는 지상에서 수신한 GNSS 신호를 관련 오차 계산 후 보정 정보를 생성하여 위성을 통해 사용자에게 보정 정보를 제공하는 시스템을 말한다. 사용자는 이 시스템을 통해 위치 정확도 향상 및 GNSS 신호에 대한 신뢰성을 보장 받는다. 또한 국제 민간항공기구(ICAO)에서는 항공기 이착륙 절차에 광역 보정시스템의 적용을 권고하고 있다. 본 논문에는 항공관련 소프트웨어 개발 절차 관련 규격문서인 RTCA DO-278의 소프트웨어 검증 프로세스를 참고하여 기 구축된 WA-DGNSS 광역 기준국 소프트웨어의 모듈 및 통합 테스트 단계를 구성하여 검증을 위한 방법론을 제시한다. 또한 제시한 방법론을 통해 기준국 소프트웨어 테스트를 통계적으로 검증하였으며 이러한 검증을 통해 기준국 소프트웨어의 기능이 적절히 수행됨이 확인되었다.

M&S기반 무기체계개발에서 시스템 안전요건 반영을 통한 VV&A 프로세스 개선에 관한 연구 (On Improving the Verification, Validation and Accreditation Process by Including Safety Requirements in M&S-Based Development of Weapon Systems)

  • 심상현;이재천
    • 대한안전경영과학회지
    • /
    • 제16권4호
    • /
    • pp.123-131
    • /
    • 2014
  • Modern weapon systems are getting more complex in terms of the functionality and also the conditions on the environment and range in which they are deployed and used. Therefore, many development programs can easily be exposed to a variety of risks, resulting in delayed schedules and cost overrun. As such, effective means are necessary to keep the defence budget at an affordable level while competitive edges on technological aspects are retained. As one way to meet those need, modeling and simulation (M&S) methods have widely been used, particularly in the test and evaluation (T&E) process for weapon systems development. The result of M&S-based systems development should be evaluated by the verification, validation & accreditation (VV&A) process to assure keeping reliability at a desired level. On the other hand, due to the explosiveness, the weapons systems development naturally requires to consider safety issues in both the T&E and operational periods. The purpose of this paper is to improve the VV&A process by reflecting the safety requirements therein. To do so, the VV&A process has been analyzed and graphically modeled first and then safety elements have been incorporated effectively. The use of the improved process in the war ships development has also been discussed. Based on the process proposed and the consequent database constructed, the target system can be expected to benefit from reducing development risks while assuring systems safety.

Performance validation and application of a mixed force-displacement loading strategy for bi-directional hybrid simulation

  • Wang, Zhen;Tan, Qiyang;Shi, Pengfei;Yang, Ge;Zhu, Siyu;Xu, Guoshan;Wu, Bin;Sun, Jianyun
    • Smart Structures and Systems
    • /
    • 제26권3호
    • /
    • pp.373-390
    • /
    • 2020
  • Hybrid simulation (HS) is a versatile tool for structural performance evaluation under dynamic loads. Although real structural responses are often multiple-directional owing to an eccentric mass/stiffness of the structure and/or excitations not along structural major axes, few HS in this field takes into account structural responses in multiple directions. Multi-directional loading is more challenging than uni-directional loading as there is a nonlinear transformation between actuator and specimen coordinate systems, increasing the difficulty of suppressing loading error. Moreover, redundant actuators may exist in multi-directional hybrid simulations of large-scale structures, which requires the loading strategy to contain ineffective loading of multiple actuators. To address these issues, lately a new strategy was conceived for accurate reproduction of desired displacements in bi-directional hybrid simulations (BHS), which is characterized in two features, i.e., iterative displacement command updating based on the Jacobian matrix considering nonlinear geometric relationships, and force-based control for compensating ineffective forces of redundant actuators. This paper performs performance validation and application of this new mixed loading strategy. In particular, virtual BHS considering linear and nonlinear specimen models, and the diversity of actuator properties were carried out. A validation test was implemented with a steel frame specimen. A real application of this strategy to BHS on a full-scale 2-story frame specimen was performed. Studies showed that this strategy exhibited excellent tracking performance for the measured displacements of the control point and remarkable compensation for ineffective forces of the redundant actuator. This strategy was demonstrated to be capable of accurately and effectively reproducing the desired displacements in large-scale BHS.

Preliminary tests of a damaged ship for CFD validation

  • Lee, Sung-Kyun;You, Ji-Myoung;Lee, Hyun-Ho;Lim, Tae-Gu;Rhee, Shin-Hyung;Rhee, Key-Pyo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제4권2호
    • /
    • pp.172-181
    • /
    • 2012
  • One of the most critical issues in naval architecture these days is the operational safety. Among many factors to be considered for higher safety level requirements, the hull stability in intact and damaged conditions is the first to ensure for both commercial and military vessels. Unlike the intact stability cases, the assessment of the damaged ship stability is very complicated physical phenomena. Therefore it is widely acknowledged that computational fluid dynamics (CFD) methods are one of most feasible approaches. In order to develop better CFD methods for damaged ship stability assessment, it is essential to perform well-designed model tests and to build a database for CFD validation. In the present study, free roll decay tests in calm water with both intact and damaged ships were performed and six degree-of-freedom (6DOF) motion responses of intact ship in regular waves were measured. Through the free roll decay tests, the effects of the flooding water on the roll decay motion of a ship were investigated. Through the model tests in regular waves, the database that provides 6DOF motion responses of intact ship was established.

비행시험을 통한 경비행기의 속도계 보정에 대한 연구 (Airspeed and Altitude Calibration of Light Airplane via Flight Test)

  • 이정훈;김성훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.891-896
    • /
    • 2007
  • This paper contained the flight test calibration for the airspeed indicator and the altimeter of the light airplane ChangGong-91, which is the first type certified aircraft from Korean Ministry of Construction and Transportation, as a part of the flight test validation. The flight test for airspeed position error calibration was performed using tower fly by method in order to calibrate swivel head testboom which is attached to the right wing tip of the airplane, and using system to system method for airspeed indicator. The altimeter calibration was calculated using flight test data for airspeed calibration. The flight test was conducted at the basis of the 'Korean Airworthiness Standard' regulation of Korean Ministry of Construction and Transportation.

  • PDF

인지기능응용척도의 타당화를 위한 기초 연구 (A Preliminary Study for the Application of Cognitive Function Scale(ACFS) in Korean Setting)

  • 조은래;황해익
    • 아동학회지
    • /
    • 제31권3호
    • /
    • pp.235-254
    • /
    • 2010
  • The purpose of this study was to examine the feasibility and validity of the Application of Cognitive Function Scale as developed by Lidz and Jepsen (1997). Data were collected from 4 to 5-years-old children. The analysis for item adequacy indicated that the passing rate increases according to age. Futhermore the analysis for test adequacy indicated that internal consistency reliability was .85 in the pre-test and .80 of post-test in terms of the cognitive function scale, and .90 of pre-test and .93 in the post-test in relation to the behavior observation scale. In conclusion, our analysis of the ACFS shows sufficiently high scores in terms of both validity and reliability, so as to indicate that this test is an appropriate way to measure the cognitive function and non-intellective function of young Korean children.

통신해양기상위성의 휠오프로딩 지상국 소프트웨어 검증시험 (Ground Software Validation Test for Wheel Off-loading of COMS)

  • 박영웅;양군호
    • 항공우주기술
    • /
    • 제9권2호
    • /
    • pp.51-56
    • /
    • 2010
  • 통신해양기상위성의 정상임무 수행시 자세제어계에 대한 중요한 지상국 소프트웨어에는 궤도위치 유지와 휠오프로딩이 있는데, 본 논문에서는 외팔보 태양전지판 형상으로 인해 E3000 heritage로부터 설계 변경을 수행하여 해석을 수행한 휠오프로딩 임무에 대한 지상국 소프트웨어 검증시험을 정리하여 기술하였다. 휠오프로딩 지상국 소프트웨어는 크게 2가지로 구분되는데, 하나는 휠오프로딩을 위한 추력기 조합 변경 시기에서의 변수 변경이고 다른 하나는 위성으로 전달해야 하는 모멘텀기준값 변경이다.

RANS법을 이용한 선박 프로펠러 날개 끝 보오텍스 유동 해석 (RANS ANALYSES OF THE TIP VORTEX FLOW OF A MARINE PROPELLER)

  • 박일룡
    • 한국전산유체공학회지
    • /
    • 제21권2호
    • /
    • pp.62-69
    • /
    • 2016
  • It has been highly demanded to improve the accuracy of CFD(Computational Fluid Dynamics) methods for the assessment of the hydrodynamic performance of marine propellers in cavitating and non-cavitating flows. This paper presents a validation study on the numerical simulation of the tip vortex flow of a non-cavitating marine propeller SVA VP1304. The calculations are carried out by using the Reynolds averaged Navier-Stokes(RANS) approach, where the Reynolds Stress Model(RSM) is used for turbulence closure. The present paper contains a grid dependence test for the propeller open water simulations and a special emphasis is placed on conducting a local grid adaptation on the blade tip and in the tip vortex to reasonably reproduce the velocity and the pressure in the tip vortex flow field. The numerical results are compared with the experimental validation data, which are published in the second International Symposium on Marine Propulsors 2011(SMP'11). The present numerical results show a reasonable agreement with the experiments.

피로수명해석에 의한 지게차용 후차축 주물빔 설계 (Steeraxle Casting Beam Design of Forklift Truck by Fatigue Life Analysis)

  • 박진홍;구재민;이오영;석창성
    • 한국정밀공학회지
    • /
    • 제28권11호
    • /
    • pp.1309-1315
    • /
    • 2011
  • The design process for obtaining the reliable steeraxle casting beam of fork lift truck is studied in this paper, as the casting beam is major component of steeraxle which has a steering function at driving. In this study, the driving mode and damage pattern of casting beam which could be occurred from the customer site were analyzed and it established the design process to predict the fatigue life by FEA(Finite Element Analysis) so that the reliability of steeraxle casting beam could be verified at DVT(Design Validation Test) mode. This paper provides guidance on the process of designing the reliable steeraxle casting beam at the initial design stage and also, provides guidance on the process of solving the problem when the failure is occurred in the field.