• Title/Summary/Keyword: Test Error

Search Result 3,938, Processing Time 0.041 seconds

IMU calibration technique and laboratory test (관성측정장치의 오차계수 식별기법 및 실험)

  • 성상만;이달호;이장규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.664-667
    • /
    • 1996
  • This paper presents the error parameter estimation technique for IMU(Inertial Measurement Unit) which is core sensor of INS(Inertial Navigation System) and verifies it via laboratory test. Firstly the error characteristic of gyroscope and accelerometer which is contained in IMU is examined and the error modelling is executed. The error of IMU can be divided into deterministic and random part, and the deterministic error can be divided into static and dynamic part. This paper consider the random part as constant. Secondly the error parameter estimation technique and following procedure for laboratory test is explained. Thirdly according to the test procedure the IMU test for static error is executed using 2-axis rate table and estimation result is presented with discussion about its validity.

  • PDF

Test Algorithm and Measurement of Housekeeping A/D Converter (하우스킵핑 A/D 변환기의 테스트 알고리즘과 측정)

  • 박용수;유흥균
    • Journal of the Semiconductor & Display Technology
    • /
    • v.3 no.4
    • /
    • pp.19-27
    • /
    • 2004
  • The characteristic evaluation of A/D converter is to measure the linearity of the converter. The evaluation of the linearity is to measure the DNL, INL, gain error and offset error in the various test parameters of A/D converter. Generally, DNL and INL are to be measured by the Histogram Test Algorithm in the DSP-based ATE environment. And gain error and offset error are to be measured by the calculation equation of the measuring algorithm. It is to propose the new Concurrent Histogram Test Algorithm for the test of the housekeeping A/D converter used in the CDMA cellular phone. Using the proposed method, it is to measure the DNL, INL, gain error and offset error concurrently and to show the measured results.

  • PDF

Effects of Human Error on the Optimal Test Internal and Unavailability of the Safety System (안전계통의 이용불능도 및 최적시험주기에 미치는 인간실수의 영향)

  • Chung, Dae-Wook;Koo, Bon-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.174-182
    • /
    • 1991
  • Effects of human error relevant to the periodic test are incorporated in the evaluations of the unavailability and optimal test interval of a safety system. Two types of possible human error with respect to the test and maintenance are considered. One is the possibility that a good safety system is inadvertently left in a bad state after test(Type A human error) and the other is the possibility that a bad safety system is undetected upon the test(Type B human error). An event tree model is developed for the steady-state unavailability of a safety system in order to determine the effects of human errors on the system unavailability and the optimal test interval. A reliability analysis of the Safety Injection System (SIS) was peformed to evaluate the effects of human error on the SIS unavailability. Results of various sensitivity analyses show that ; (1) the steady-state unavailability of the safety system increases as the probabilities of both types of human error increase and it is far more sensitive to Type A human error, (2) the optimal test interval increases slightly as the probability of Type A human error increases but it decreases as the probability of Type B human error increases, and (3) provided that the test interval of the safety injction pump is kept unchanged, the unavailability of SIS increases significantly as the probability of Type A human error increases but slightly as the probability of Type B human error increases. Therefore, to obtain the realistic result of reliability analysis, one should take shorter test interval (not optimal test interval) so that the unavailability of SIS can be maintained at the same level irrespective of human error. Since Type A human error during test & maintenance influeces greatly on the system unavailability, special efforts to reduce the possibility of Type A human error are essential in the course of test & maintenance.

  • PDF

Modelling of IMU Error with Setteing Misalignment in Laboratory Test (실험실 시험 장착오차를 고려한 관성측정장치 오차 모델링)

  • Seong, Sang-Man;Lee, Dal-Ho;Lee, Jang-Gyu
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.4
    • /
    • pp.428-433
    • /
    • 1999
  • The errors of IMU(Inertial Measurement Unit) can be divided into deterministic and random errors. Since the required accuracy of the IMU is very high, the errors must be compensated by using an accurate error mode. In this paper, we present a method to get a more accurate error model in a laboratory test. This was done by considering the setting misalignment in the laboratory test in the IMU error model. We considered here the IMU which consits of DTG(dynamically tuned gyroscope) and pendulum type accelerometer. First, it was shown that the estimation result from the model which does not contain the setting misalignment gives considerable estimation error at the validation test. Second, a new model considering the setting misalignment was derived. Finally, by validation test using the estimation results from new model the validity of it was proved.

  • PDF

A Reverse Kinematic Approach for Error Analysis of a Machine Tool Using Helical Ball Bar Test (헬리컬 볼바 측정을 사용한 공작기계 오차해석의 역기구학적 접근)

  • 김기훈;양승한
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.703-707
    • /
    • 2000
  • Machine tool errors have to be characterized and predicted to improve machine tool accuracy. A real-time error compensation system has been developed based on volumetric error synthesis model which is composed of machine tool errors. This paper deals with new algorithm about verification of machine tool errors. This new algorithm uses a simplified volumetric error synthesis model. This simplified model is constructed with only main components among the error components of the machines. This main error components are analyzed by three-dimensional helical ball bar test. By substituting result of helical ball bar test fer simplified model, we could find that obtained error components are closed to real error components.

  • PDF

Design of the Memory Error Test Module at a Device Driver of the Linux (리눅스 디바이스 드라이버 내의 메모리 오류 테스트 모듈 설계)

  • Jang, Seung-Ju
    • The KIPS Transactions:PartA
    • /
    • v.14A no.3 s.107
    • /
    • pp.185-190
    • /
    • 2007
  • The necessity of error test module is increasing as development of embedded Linux device driver. This paper proposes the basic concept of freed memory error test module in the Linux device driver and designs error test module. The USB device driver is designed for freed memory error test module. I insert the test code to verify the USB device driver. I test the suggested error test module for the USB storage device driver. I experiment error test in this module.

Type I Error Rates and Power for Omnibus Tests of Repeated Measures Measn in the Split-Plot Design : F test, $\widetilde{\xi}$F test, and CIGA test

  • Kim, Hyunchul
    • Communications for Statistical Applications and Methods
    • /
    • v.4 no.1
    • /
    • pp.139-149
    • /
    • 1997
  • For split plot designs exact univariate F tests of the within-subjects main effect are based on the assumption of multisample sphericity. Type I error rates and power are reported for the F test and two tests designed for use when multisample sphericity is violated: the $\widetilde{\xi}$-adjusted test and the Corrected Improved General Approximation(CIGA) test.The results indicate that even though the F test and the $\widetilde{\xi}$-adjusted test have better power than the CIGA test in some conditions, the F test and the $\widetilde{\xi}$-adjusted test do not control Type I error rates when the design is unbalanced and the F test dose not have a good control of Type I error rates when sphericity assumption is severely violated.

  • PDF

Study on PEC Flight Test Techniques for Small Airplane (소형비행기 동정압 시스템 보정을 위한 비행시험방안 연구)

  • Kim, Phil-Soo
    • Journal of Aerospace System Engineering
    • /
    • v.5 no.2
    • /
    • pp.1-7
    • /
    • 2011
  • On this study, applicable aircraft pitot-static system airworthiness requirements and flight test techniques for PEC(Position Error Correction) to KAS Part 23 airworthiness standards are introduced. Also, pros and cons, applicable test conditions, test procedures and required test parameters of each flight test techniques are reviewed on this study.

Neyman-Pearson Test for Descrambling Error Correction (Neyman-Pearson Test를 이용한 Descramble error 보정 기법)

  • 이영호;양승준;유필호
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.1739-1742
    • /
    • 2003
  • 본 논문에서는 입력영상의 휘도 신호에 Neyman-pearson Test를 이용하여 descramble error를 효과적으로 보정하는 기법을 제안한다. 아날로그 회로의 오차와 noise 의 영향으로 scramble 된 라인의 오프셋 값을 정확히 보상하지 못할 경우에 발생하는 descramble error를 scrambler/ descrambler 의 기기별 차이에 관계없이, 또한 scrambler 와 descrambler로부터 어떠한 정보 없이 descramble 시에 발생한 error 의 offset 값과 scramble 된 라인을 검출하여 보상하는 방법을 논하였다.

  • PDF

Development of an NC Machine Performance Test and Calibration System (수치제어 공작기계의 위치오차 측정 및 보정시스템 개발)

  • 이상윤;박준호;조선휘;김문상
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1431-1440
    • /
    • 1993
  • This paper presents a new NC machine performance test and calibration system. In order to measure NC machine erros in simpler, and less time-comsuming way, some indirect measuring systems such as circular disk system and double ball bar system have been developed instead of laser interferometer. But these indirect measuring systems have shown their limits in identifying each of NC machine error sources in absolute numerical value. Therefore, we developed an unique NC machine error measurement system which provides a simple measuring process like other conventional indirect methods and still can indentify each of NC machine error sources in absolute numerical value.